COR 5.5.0 DTD ■ OPHTHA10355_proof ■ 11 August 2018 ■ 11:59 am ■ ce

TO THE EDITOR: We read with interest the article on myopia and light exposure by Wu et al. Although the study evaluated the effect after 1 year of continuous intervention, measuring the change in spherical equivalent and axial length, outdoor time was evaluated objectively by means of a pendant light meter the children wore on their collars only for 7 consecutive days. In addition, it was not explained if the children wore the pendant for 1 week at the beginning of the study, to obtain the basal measurements, and again for 1 week at the end of the study, as Table 4 suggested. Undoubtedly, it would have been preferable to obtain the quantitative information from the light meters for a longer period (≥4 weeks). Furthermore, the light meters were used only to calculate the weekly in-school outdoor time, whereas afternoon out-of-school outdoor time and weekend outdoor time were obtained from a less reliable, nonquantitative, and more subject-dependent method (a diary log), because of compliance issues.

No data on compliance of wearing the light meters out of the schools were provided.

In Table 5 of the original article, which showed the analysis of myopic shift with outdoor times measured by different cutoff points of light intensity in all participants, it would be interesting to have the number of children in each category. It is indicated that those children with ≥200 minutes a week of exposure to both ≥1000 and ≥3000 lux showed a protective effect compared with those having <125 minutes of weekly light exposure (with a difference of 0.14 and 0.16 diopters [D], respectively). However, children also with ≥200 minutes a week of exposure to an even higher intensity of light (≥5000 lux) did not reach a significant protective effect compared with those with <125 minutes a week. Does it mean that those with <125 minutes of exposure to high levels of light also had the protective effect? In addition, was the myopic shift of those exposed to higher levels of light less than those with exposure to lower light levels, even if both groups had >200 minutes a week?

The authors explained that participants who had ≥200 minutes of weekly outdoor time during school and were not myopic at baseline had significantly less myopic shift when exposed to ≥1000 lux (0.18 D), ≥3000 lux (0.22 D), or ≥5000 lux (0.24 D) environments than those with exposure <125 minutes per week. However, when assessing participants who had 125 to 199 minutes of outdoor time during school, only those who were exposed to a ≥1000 lux environment had significantly less myopic shift (0.16 D) than the reference group. This finding suggested that, for schoolchildren with less outdoor time, a greater light intensity of light is necessary to reach the protective effects, whereas in those with longer durations of outdoor time, moderate levels of light (≥1000 lux or ≥3000 lux) may be sufficient to protect against myopia. We wonder if even lower light intensities, but for longer periods of times (i.e., 500 lux for 400 minutes per week) would also be protective.

Currently, we are planning a study increasing lighting indoors in classrooms based on the study by Hua et al published in 2015.2 The commented findings by Wu et al seem to correlate with this research, because the intensity was increased to a level of only ≥500 lux in the desk of the students.

These results, as explained by the authors, are in contrast with animal studies, where it has been found that the increased protection occurs only at much higher light intensities.1,3,4 In contrast, Read et al also found that emmetropic children spent significantly greater time exposed to moderate intensity light (>1000 lux) compared with the myopic children.

As shown in the photograph 9 of Figure 2 of the original study by Wu et al, many classrooms have light levels below 500 lux; therefore, it seems a very plausible option to investigate. Furthermore, it is a measure very easy to implant if more studies confirm its advantages.

Financial Disclosures: The authors have no proprietary or commercial interest in any materials discussed in this article.

Available online: ****.

Correspondence: Alejandro Tello, MD, PhD, Universidad Autónoma de Bucaramanga UNAB, Centro Oftalmologico Virgilio Galvis, Floridablanca, Colombia. E-mail: alejandrotello@gmail.com.

References