Advertisement

Retinal Nerve Fiber Layer Thickness and Rim Area Profiles in Asians

Pooled Analysis from the Asian Eye Epidemiology Consortium
Published:November 29, 2021DOI:https://doi.org/10.1016/j.ophtha.2021.11.022

      Purpose

      To evaluate ethnic variations, ocular and systemic determinants of retinal nerve fiber layer (RNFL) thickness, and neuroretinal rim area among Asians using a large consortium of population-based eye studies.

      Design

      Cross-sectional pooled analysis.

      Participants

      Twenty-two thousand four hundred thirty-six participants (22 436 eyes) from 10 population-based studies (in China, Hong Kong, India, Japan, Russia, and Singapore) of the Asian Eye Epidemiology Consortium.

      Methods

      Participants 40 years of age or older without glaucoma were included. All participants underwent spectral-domain OCT imaging and systemic and ocular examinations. Data were pooled from each study. Multivariable regression was performed to evaluate interethnic differences, intermachine variations, and ocular and systemic factors associated with RNFL thickness and rim area, adjusting for age, gender, diabetes, intraocular pressure (IOP), spherical equivalent (SE), ethnicity, OCT model, and study group. When evaluating body mass index, smoking, and hypertension as exposures, these factors were additionally adjusted for in the model.

      Main Outcome Measures

      Average RNFL thickness (in micrometers) and rim area (in square millimeters).

      Results

      Indian and Japanese eyes have thinner RNFLs than those of other Asian ethnicities (β values range, 7.31–12.76 μm; P < 0.001 for all pairwise comparisons). Compared with measurements by Cirrus HD-OCT (Carl Zeiss Meditec, Inc), RNFL on average was 7.29 μm thicker when measured by Spectralis (Heidelberg Engineering), 12.85 μm thicker when measured by RS-3000 (NIDEK Co, Ltd; Aichi, Japan), and 17.48 μm thicker when measured by iVue/RTVue (Optovue, Inc) devices (all P < 0.001). Additionally, older age (per decade, β = –2.70), diabetes (β = –0.72), higher IOP (per 1 mmHg, β = –0.07), more myopic SE (per diopter, β = –1.13), cardiovascular disease (β = –0.94), and hypertension (β = –0.68) were associated with thinner RNFL (all P ≤ 0.003). Similarly, older age (β = –0.019), higher IOP (β = –0.010), and more myopic SE (β = –0.025) were associated with smaller rim area (all P < 0.001).

      Conclusions

      In this large pooled analysis of Asian population studies, Indian and Japanese eyes were observed to have thinner RNFL profiles. These findings suggest the need for an ethnic-specific normative database to improve glaucoma detection.

      Keywords

      Abbreviations and Acronyms:

      APEDS (Andhra Pradesh Eye Disease Study), BES (Beijing Eye Study), BMI (body mass index), CI (confidence interval), CVD (cardiovascular disease), D (diopter), E3 (European Eye Epidemiology), HDES (Handan Eye Study), HKES (Hong Kong Eye Study), IOP (intraocular pressure), JPHCES (Japan Public Health Centre-Based Prospective Eye Study), NS (Nagahama Study), RNFL (retinal nerve fiber layer), SCES (Singapore Chinese Eye Study), SD (spectral-domain), SE (spherical equivalent), SiMES (Singapore Malay Eye Study), SINDI (Singapore Indian Eye Study), UEMS (Ural Eye and Medical Study)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flaxman S.R.
        • Bourne R.R.A.
        • Resnikoff S.
        • et al.
        Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis.
        Lancet Glob Health. 2017; 5 (e122–e1234)
        • Tham Y.-C.
        • Li X.
        • Wong T.Y.
        • et al.
        Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis.
        Ophthalmology. 2014; 121: 2081-2090
        • Soh Z.D.
        • Yu M.
        • Betzler B.K.
        • et al.
        The global extent of undetected glaucoma in adults: a systematic review and meta-analysis.
        Ophthalmology. 2021; 128: 1393-1404
        • Danthurebandara V.M.
        • Sharpe G.P.
        • Hutchison D.M.
        • et al.
        Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement.
        Invest Ophthalmol Vis Sci. 2014; 56: 98-105
        • Kuang T.M.
        • Zhang C.
        • Zangwill L.M.
        • et al.
        Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects.
        Ophthalmology. 2015; 122: 2002-2009
      1. Brimacombe JA. Cirrus HD-OCT with Retinal Nerve Fiber Layer (RNFL), Macular, Optic Nerve Head and Ganglion Cell Normative Databases U.S. Food & Drug Administration (FDA). Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K111157. Published 2012. Accessed June 15, 2020.

      2. Talarico J. Optovue, Inc. RTVue with Normative Database United States Food & Drug Administration (FDA). Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K101505. Published 2010. Accessed June 15, 2020.

      3. Mandell-Horwitz D. Spectralis HRA + OCT United States Food & Drug Administration (FDA). Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K101223. Published 2010. Accessed June 15, 2020.

      4. Sattler L. Nidek Optical Coherence Tomography RS-3000. United States Food & Drug Administration (FDA). Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K132323. Published 2013. Accessed June 15 2020, 2020.

        • Ho H.
        • Tham Y.-C.
        • Chee M.L.
        • et al.
        Retinal nerve fiber layer thickness in a multiethnic normal Asian population: the Singapore Epidemiology of Eye Diseases Study.
        Ophthalmology. 2019; 126: 702-711
        • Tham Y.-C.
        • Chee M.L.
        • Dai W.
        • et al.
        Profiles of ganglion cell-inner plexiform layer thickness in a multi-ethnic Asian population: the Singapore Epidemiology of Eye Diseases Study.
        Ophthalmology. 2020; 127: 1064-1076
        • Lim Z.W.
        • Chee M.L.
        • Lim S.H.
        • et al.
        Normative profiles of neuroretinal rim area in a multiethnic Asian population: the Singapore Epidemiology of Eye Diseases Study.
        Br J Ophthalmol. 2020 Nov 30; (bjophthalmol-2020-317323) (Online ahead of print)https://doi.org/10.1136/bjophthalmol-2020-317323
        • Khawaja A.P.
        • Chan M.P.
        • Garway-Heath D.F.
        • et al.
        Associations with retinal nerve fiber layer measures in the EPIC-Norfolk Eye Study.
        Invest Ophthalmol Vis Sci. 2013; 54: 5028-5034
        • Zhao L.
        • Wang Y.
        • Chen C.X.
        • et al.
        Retinal nerve fibre layer thickness measured by Spectralis spectral-domain optical coherence tomography: the Beijing Eye Study.
        Acta Ophthalmol. 2014; 92: e35-e41
        • Budenz D.L.
        • Anderson D.R.
        • Varma R.
        • et al.
        Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT.
        Ophthalmology. 2007; 114: 1046-1052
        • Knight O.J.
        • Girkin C.A.
        • Budenz D.L.
        • et al.
        Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT.
        Arch Ophthalmol. 2012; 130: 312-318
        • Alasil T.
        • Wang K.
        • Keane P.A.
        • et al.
        Analysis of normal retinal nerve fiber layer thickness by age, sex, and race using spectral domain optical coherence tomography.
        J Glaucoma. 2013; 22: 532-541
        • Chua J.
        • Schwarzhans F.
        • Nguyen D.Q.
        • et al.
        Compensation of retinal nerve fibre layer thickness as assessed using optical coherence tomography based on anatomical confounders.
        Br J Ophthalmol. 2020; 104: 282-290
        • Mauschitz M.M.
        • Bonnemaijer P.W.M.
        • Diers K.
        • et al.
        Systemic and ocular determinants of peripapillary retinal nerve fiber layer thickness measurements in the European Eye Epidemiology (E3) population.
        Ophthalmology. 2018; 125: 1526-1536
        • Sahin O.Z.
        • Sahin S.B.
        • Ayaz T.
        • et al.
        The impact of hypertension on retinal nerve fiber layer thickness and its association with carotid intima media thickness.
        Blood Press. 2015; 24: 178-184
        • Lamparter J.
        • Schmidtmann I.
        • Schuster A.K.
        • et al.
        Association of ocular, cardiovascular, morphometric and lifestyle parameters with retinal nerve fibre layer thickness.
        PLoS One. 2018; 13e0197682
        • Nousome D.
        • McKean-Cowdin R.
        • Richter G.M.
        • et al.
        Retinal nerve fiber layer thickness in healthy eyes of African, Chinese, and Latino Americans: a population-based multiethnic study.
        Ophthalmology. 2021; 128: 1005-1015
        • Rim T.H.
        • Kawasaki R.
        • Tham Y.C.
        • et al.
        Prevalence and pattern of geographic atrophy in Asia: the Asian Eye Epidemiology Consortium.
        Ophthalmology. 2020; 127: 1371-1381
        • Wong Y.L.
        • Zhu X.
        • Tham Y.C.
        • et al.
        Prevalence and predictors of myopic macular degeneration among Asian adults: pooled analysis from the Asian Eye Epidemiology Consortium.
        Br J Ophthalmol. 2021; 105: 1140-1148
        • Tham Y.C.
        • Tao Y.
        • Zhang L.
        • et al.
        Is kidney function associated with primary open-angle glaucoma? Findings from the Asian Eye Epidemiology Consortium.
        Br J Ophthalmol. 2020; 104: 1298-1303
        • Sabanayagam C.
        • Sultana R.
        • Banu R.
        • et al.
        Association between body mass index and diabetic retinopathy in Asians: the Asian Eye Epidemiology Consortium (AEEC) study.
        Br J Ophthalmol. 2021 Feb 23; (bjophthalmol-2020-318208) (Online ahead of print)https://doi.org/10.1136/bjophthalmol-2020-318208
        • JBI Collaboration, University of Adelaide
        Critical appraisal tools.
        (Available at:) (Published 2016. Accessed 15.07.21)
        • Khanna R.C.
        • Murthy G.V.
        • Marmamula S.
        • et al.
        Longitudinal Andhra Pradesh Eye Disease Study: rationale, study design and research methodology.
        Clin Exp Ophthalmol. 2016; 44: 95-105
        • Majithia S.
        • Tham Y.C.
        • Chee M.L.
        • et al.
        Cohort profile: the Singapore Epidemiology of Eye Diseases Study (SEED).
        Int J Epidemiol. 2021; 50: 41-52
        • Liang Y.B.
        • Friedman D.S.
        • Wong T.Y.
        • et al.
        Rationale, design, methodology, and baseline data of a population-based study in rural China: the Handan Eye Study.
        Ophthalmic Epidemiol. 2009; 16: 115-127
        • You Q.S.
        • Choy B.K.N.
        • Chan J.C.H.
        • et al.
        Prevalence and causes of visual impairment and blindness among adult Chinese in Hong Kong—the Hong Kong Eye Study.
        Ophthalmic Epidemiol. 2020; 27: 354-363
        • Ito Y.
        • Sasaki M.
        • Takahashi H.
        • et al.
        Quantitative assessment of the retina using OCT and associations with cognitive function.
        Ophthalmology. 2020; 127: 107-118
        • Miyake M.
        • Yamashiro K.
        • Tabara Y.
        • et al.
        Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia.
        Nat Commun. 2015; 6: 6689
        • Bikbov M.
        • Fayzrakhmanov R.R.
        • Kazakbaeva G.
        • Jonas J.B.
        Ural Eye and Medical Study: description of study design and methodology.
        Ophthalmic Epidemiol. 2018; 25: 187-198
        • Jonas J.B.
        • Xu L.
        • Wang Y.X.
        The Beijing Eye Study.
        Acta Ophthalmol. 2009; 87: 247-261
        • Jonas J.B.
        • Nangia V.
        • Gupta R.
        • et al.
        Retinal nerve fibre layer cross-sectional area, neuroretinal rim area and body mass index.
        Acta Ophthalmol. 2014; 92: e194-e199
        • Rosner B.
        Percentage points for a generalized ESD many-outlier procedure.
        Technometrics. 1983; 25: 165-172
        • Pierro L.
        • Gagliardi M.
        • Iuliano L.
        • et al.
        Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments.
        Invest Ophthalmol Vis Sci. 2012; 53: 5912-5920
        • Balshem H.
        • Helfand M.
        • Schünemann H.J.
        • et al.
        GRADE guidelines: 3. Rating the quality of evidence.
        J Clin Epidemiol. 2011; 64: 401-406
        • Guyatt G.H.
        • Oxman A.D.
        • Vist G.E.
        • et al.
        GRADE: an emerging consensus on rating quality of evidence and strength of recommendations.
        BMJ. 2008; 336: 924-926
        • Girkin C.A.
        • McGwin Jr., G.
        • Sinai M.J.
        • et al.
        Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography.
        Ophthalmology. 2011; 118: 2403-2408
        • Parikh R.S.
        • Parikh S.R.
        • Sekhar G.C.
        • et al.
        Normal age-related decay of retinal nerve fiber layer thickness.
        Ophthalmology. 2007; 114: 921-926
        • Schuster A.K.
        • Fischer J.E.
        • Vossmerbaeumer C.
        • Vossmerbaeumer U.
        Determinants of peripapillary retinal nerve fiber layer thickness regarding ocular and systemic parameters—the MIPH Eye & Health Study.
        Graefes Arch Clin Exp Ophthalmol. 2016; 254: 2011-2016
        • Chatziralli I.
        • Karamaounas A.
        • Dimitriou E.
        • et al.
        Peripapillary retinal nerve fiber layer changes in patients with diabetes mellitus: a case-control study.
        Semin Ophthalmol. 2020; 35: 257-260
        • Zhang Q.
        • Jan C.
        • Guo C.Y.
        • et al.
        Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma.
        Clin Exp Ophthalmol. 2018; 46: 389-399
        • Ren R.
        • Wang N.
        • Zhang X.
        • et al.
        Cerebrospinal fluid pressure correlated with body mass index.
        Graefes Arch Clin Exp Ophthalmol. 2012; 250: 445-446
        • Buchser N.M.
        • Wollstein G.
        • Ishikawa H.
        • et al.
        Comparison of retinal nerve fiber layer thickness measurement bias and imprecision across three spectral-domain optical coherence tomography devices.
        Invest Ophthalmol Vis Sci. 2012; 53: 3742-3747
        • Chen T.C.
        • Hoguet A.
        • Junk A.K.
        • et al.
        Spectral-domain OCT: helping the clinician diagnose glaucoma: a report by the American Academy of Ophthalmology.
        Ophthalmology. 2018; 125: 1817-1827
        • Mwanza J.C.
        • Oakley J.D.
        • Budenz D.L.
        • Anderson D.R.
        Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes.
        Ophthalmology. 2011; 118: 241-248.e1