Future IOL Technologies

Published:December 25, 2020DOI:https://doi.org/10.1016/j.ophtha.2020.12.025

      Abstract

      Over the last couple of years, cataract surgery – already an intervention of high efficiency and safety – has undergone further refinement, not least because of new IOL technologies that have entered the market. In this overview, innovative IOL designs will be presented, some of which are already in clinical use (though sometimes primarily at specialized centers) while others will be introduced shortly. Based on our own clinical experience and without any claims to completeness (there are many innovations currently under development of which we know little), we will focus on technologies like IOLs that can be adjusted postoperatively, on lenses that strive to treat presbyopia (the so-called final frontier in refractive surgery), on small-aperture and EDOF lenses. Some IOL innovations will have a positive impact way beyond cataract surgery like the lens/sensor that is going to benefit the not so small number of patients who suffer simultaneously from cataract and glaucoma.
      To read this article in full you will need to make a payment
      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lundstrom M.
        • Dickman M.
        • Henry Y.
        • et al.
        Risk factors for refractive error after cataract surgery: Analysis of 282 811 cataract extractions reported to the European Registry of Quality Outcomes for cataract and refractive surgery.
        J Cataract Refract Surg. 2018; 44: 447-452
        • Simon S.S.
        • Chee Y.E.
        • Haddadin R.I.
        • et al.
        Achieving target refraction after cataract surgery.
        Ophthalmology. 2014; 121: 440-444
        • Savini G.
        • Hoffer K.J.
        Intraocular lens power calculation in eyes with previous corneal refractive surgery.
        Eye Vis (Lond). 2018 Jul 8; 5: 18https://doi.org/10.1186/s40662-018-0110-5
        • Brierley L.
        Refractive results after implantation of a light-adjustable intraocular lens in postrefractive surgery cataract patients.
        Ophthalmology. 2013; 120: 1968-1972
      1. Hengerer FH, Dick HB, Conrad-Hengerer I. Clinical evaluation of an ultraviolet light adjustable intraocular lens implanted after cataract removal: eighteen months follow-up.Ophthalmology, 2011 Ophthalmology. 2011:118:2382-2388

        • Chayet A.
        • Sandstedt C.A.
        • Chang S.H.
        • et al.
        Correction of residual hyperopia after cataract surgery using the light adjustable intraocular lens technology.
        Am J Ophthalmol. 2009; 147: 392-397
        • Chayet A.
        • Sandstedt C.
        • Chang S.
        • et al.
        Correction of myopia after cataract surgery with a light-adjustable lens.
        Ophthalmology. 2009; 116: 1432-1435
        • Schojai M.
        • Schultz T.
        • Schulze K.
        • et al.
        Long-term Follow-up and Clinical Evaluation of the Light Adjustable Intraocular Lens (LAL) Implanted after Cataract Removal: Seven-Year Results.
        J Cataract Refract Surg. 2020; 46: 8-13
        • Chang D.
        Disruptive innovation and refractive IOLs: How the game will change with adjustable IOLs.
        Asia Pac J Ophthalmol (Phila). 2019; 8: 432-435
        • Boot W.R.
        • Charness N.
        • Czaja S.J.
        • et al.
        Computer proficiency questionnaire: assessing low and high computer proficient seniors.
        Gerontologist. 2015; 55: 404-411
        • Cochener B.
        • Boutillier G.
        • Lamard M.
        A Comparative Evaluation of a New Generation of Diffractive Trifocal and Extended Depth of Focus Intraocular Lenses.
        J Refract Surg. 2018; 34: 507-514
        • Breyer D.R.H.
        • Kaymak H.
        • Ax T.
        • et al.
        Multifocal Intraocular Lenses and Extended Depth of Focus Intraocular Lenses.
        Asia Pac J Ophthalmol (Phila). 2017; 6: 339-349
      2. Cochener B; Concerto Study GroupClinical outcomes of a new extended range of vision intraocular lens: International Multicenter Concerto Study. J Cataract Refract Surg. 2016; 42:1268-1275

        • Schallhorn S.C.
        • Teenan D.
        • Venter J.A.
        • et al.
        Initial Clinical Outcomes of a New Extended Depth of Focus Intraocular Lens.
        J Refract Surg. 2019; 35: 426-433
        • Belluci R.
        • Curatolo M.C.
        A New Extended Depth of Focus Intraocular Lens Based on Spherical Aberration.
        J Refract Surg. 2017; 33: 389-394
        • Savini G.
        • Schiano-Lomoriello D.
        • Balducci N.
        • et al.
        Visual Performance of a New Extended Depth-of-Focus Intraocular Lens Compared to a Distance-Dominant Diffractive Multifocal Intraocular Lens.
        J Refract Surg. 2018; 34: 228-235
        • Giers B.C.
        • Khoramnia R.
        • Varadi D.
        • et al.
        Functional results and photic phenomena with new extended-depth-of-focus intraocular Lens.
        BMC Ophthalmol. 2019 Aug 28; 19: 197https://doi.org/10.1186/s12886-019-1201-3
      3. CRST, April 2020.

      4. Myles Hume: An IOL to change the cataract surgery paradigm? Insight, July 7, 2020.

        • Vargas V.
        • Radner W.
        • Allan B.D.
        • et al.
        Methods for the study of near, intermediate vision, and accommodation: an overview of subjective and objective approaches.
        Surv Ophthalmol. 2019; 64: 90-100
      5. Dick HB. Small-aperture strategies for the correction of presbyopia. Curr Opin Ophthalmol. 2019; 30:236-242.

      6. FDA. RVO 2.0, Inc. recalls raindrop near vision inlay due to risk of increased risk of corneal haze. Medical Device Recalls. www.fda.gov/MedicalDevices/Safety/ListofRecalls/ucm632670.htm. March 5, 2019.

        • Trindade C.C.
        • Trindade B.C.
        • Trindade F.C.
        • et al.
        New pinhole sulcus implant for the correction of irregular corneal astigmatism.
        J Cataract Refract Surg. 2017; 43: 1297-1306
        • Trindade B.L.C.
        • Trindade F.C.
        • Trindade C.L.C.
        • et al.
        Phacoemulsification with intraocular pinhole implantation associated with Descemet membrane endothelial keratoplasty to treat failed full-thickness graft with dense cataract.
        J Cataract Refract Surg. 2018; 44: 1280-1283
        • Trindade B.L.C.
        • Trindade F.C.
        • Trindade C.L.C.
        Intraocular pinhole implantation for irregular astigmatism after planned and unplanned posterior capsule opening during cataract surgery.
        J Cataract Refract Surg. 2019; 45: 372-377
        • Agarwal P.
        • Navon S.E.
        Persistent troublesome floaters necessitating the explantation of XtraFocus Pinhole IOL (Morcher).
        BMJ Case Rep. 2019 Apr 8; 12 (pii)e229057https://doi.org/10.1136/bcr-2018-229057
        • Agarwal P.
        • Navon S.E.
        • Subudhi P.
        • Mithal N.
        Persistently poor vision in dim illumination after implantation of XtraFocus small-aperture IOL (Morcher).
        BMJ Case Rep. 2019 Nov 10; 12 (pii)e232473https://doi.org/10.1136/bcr-2019-232473
        • Grabner G.
        • Ang R.E.
        • Vilupuru S.
        • et al.
        The Small-Aperture IC-8 Intraocular Lens: A New Concept for Added Depth of Focus in Cataract Patients.
        Am J Ophthalmol. 2015; 160: 1176-1184
        • Dick H.B.
        • Piovella M.
        • Vukich J.
        • et al.
        Prospective multicentre trial of a small-aperture intraocular lens in cataract surgery.
        J Cataract Refract Surg. 2017; 43: 956-968
        • Ang R.E.
        Comparison of tolerance to induced astigmatism in pseudophakic eyes implanted with small aperture, trifocal, or monofocal intraocular lenses.
        Clin Ophthalmol. 2019; 13: 905-911
        • Dick H.B.
        • Elling M.
        • Schultz T.
        Binocular and Monocular Implantation of Small-Aperture Intraocular Lenses in Cataract Surgery.
        J Refract Surg. 2018; 34: 629-631
        • Alio J.L.
        • Alio del Barrio J.L.
        • Vega-Estrada A.
        Accommodative intraocular lenses: where are we and where we are going.
        Eye and Vision. 2017; 4: 16https://doi.org/10.1186/s40662-017-0077-7
        • Alió J.L.
        • Plaza-Puche A.B.
        • Montalban R.
        • Javaloy J.
        Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens.
        J Cataract Refract Surg. 2012; 38: 978-985
        • Mastropasqua L.
        • Toto L.
        • Falconio G.
        • Nubile M.
        • Carpineto P.
        • Ciancaglini M.
        • et al.
        Longterm results of 1 CU accommodative intraocular lens implantation: 2-year follow-up study.
        Acta Ophthalmol Scand. 2007; 85: 409-414
        • Pepose J.S.
        • Burke J.
        • Qazi M.A.
        Benefits and barriers of accommodating intraocular lenses.
        Curr Opin Ophthalmol. 2017; 28: 3-8
      7. No peer-reviewed source! EuroTimes, April 1, 2019.

      8. No peer-reviewed source! ASCRS Eyeworld, February 2012.

        • Alió J.L.
        • Simonov A.N.
        • Romero D.
        • et al.
        Analysis of accommodative performance of a new accommodative intraocular lens.
        J Refract Surg. 2018; 34: 78-83
      9. Alio JL, Simonov AN, Plaza-Puche AB, et al. Visual Outcomes and Accommodative Response of the Lumina Accommodative Intraocular Lens. Am J Ophthalmol 2016; 164:37-48.

        • Hu J.
        • Sella R.
        • Afshari N.A.
        Dysphotopsia: a multifaceted optic phenomenon.
        Curr Opin Ophthalmol. 2018; 29: 61-68
        • Erie J.C.
        • Simpson M.J.
        • Bandhauer M.H.
        A modified intraocular lens design to reduce negative dysphotopsia.
        J Cataract Refract Surg. 2019; 45: 1013-1019
      10. No peer-reviewed source! EuroTimes, May 1, 2018.

        • Matlach J.
        • Bender S.
        • König J.
        • et al.
        Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression.
        Clin Ophthalmol. 2018; 13: 9-16
      11. Nuyen B, Mansouri K. Detecting IOP Fluctuations in Glaucoma Patients. Open Ophthalmol J. 2016; 10:44-55.

      12. Arora T, Bali SJ, Arora V, Wadhwani M, Panda A, Dada T. Diurnal versus office-hour intraocular pressure fluctuation in primary adult onset glaucoma. J Optom. 2015; 8:239- 243.

        • Dabasia P.L.
        • Lawrenson J.G.
        • Murdoch I.E.
        Evaluation of a new rebound tonometer for selfmeasurement of intraocular pressure.
        Br J Ophthalmol. 2016; 100: 1139-1143
        • Dunbar G.E.
        • Shen B.Y.
        • Aref A.A.
        The Sensimed Triggerfish contact lens sensor: efficacy, safety, and patient perspectives.
        Clin Ophthalmol Auckl NZ. 2017; 11: 875-882
      13. Koutsonas A, Walter P, Roessler G, Plange N. Implantation of a novel telemetric intraocular pressure sensor in patients with glaucoma (ARGOS study): 1-year results. Invest Ophthalmol, 2015 Ophthalmol Vis Sci. 2015; 56:1063-1069.

        • Najmanová E.
        • Pluháček F.
        • Haklová M.
        Intraocular pressure response affected by changing of sitting and supine positions.
        Acta Ophthalmol. 2019 Oct 10; https://doi.org/10.1111/aos.14267
      14. Choritz L, Mansouri K, van den Bosch J et al. Telemetric Measurement of Intraocular Pressure via an Implantable Pressure Sensor-12-Month Results from the ARGOS-02 Trial. Am J Ophthalmol. 2019 Sep 20. pii: S0002-9394(19)30469-6. doi: 10.1016/j.ajo.2019.09.011