Advertisement

Reducing the Global Burden of Myopia by Delaying the Onset of Myopia and Reducing Myopic Progression in Children

The Academy’s Task Force on Myopia
Published:December 30, 2020DOI:https://doi.org/10.1016/j.ophtha.2020.10.040
      In 2019, the American Academy of Ophthalmology (AAO) created the Task Force on Myopia in recognition of the substantial global increases in myopia prevalence and its associated complications. The Task Force, led by Richard L. Abbott, MD, and Donald Tan, MD, comprised recognized experts in myopia prevention and treatment, public health experts from around the world, and organization representatives from the American Academy of Family Physicians, American Academy of Optometry, and American Academy of Pediatrics. The Academy’s Board of Trustees believes that myopia is a high-priority cause of visual impairment, warranting a timely evaluation and synthesis of the scientific literature and formulation of an action plan to address the issue from different perspectives. This includes education of physicians and other health care providers, patients and their families, schools, and local and national public health agencies; defining health policies to ameliorate patients’ access to appropriate therapy and to promote effective public health interventions; and fostering promising avenues of research.

      Key words

      Abbreviations and Acronyms:

      AAO (American Academy of Ophthalmology), CI (confidence interval), D (diopter), NHANES (National Health and Nutrition Examination Survey), OOK (overnight orthokeratology)
      To read this article in full you will need to make a payment
      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Holden B.A.
        • Fricke T.R.
        • Wilson D.A.
        • et al.
        Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050.
        Ophthalmology. 2016; 123: 1036-1042
        • Tideman J.W.
        • Snabel M.C.
        • Tedja M.S.
        • et al.
        Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia.
        JAMA Ophthalmol. 2016; 134: 1355-1363
        • Ang M.
        • Flanagan J.L.
        • Wong C.W.
        • et al.
        Review: myopia control strategies recommendations from the 2018 WHO/IAPB/BHVI meeting on myopia.
        Br J Ophthalmol. 2020; 104: 1482-1487
        • Rose K.
        • Harper R.
        • Tromans C.
        • et al.
        Quality of life in myopia.
        Br J Ophthalmol. 2000; 84: 1031-1034
        • Takashima T.
        • Yokoyama T.
        • Futagami S.
        • et al.
        The quality of life in patients with pathologic myopia.
        Jpn J Ophthalmol. 2001; 45: 84-92
        • Queiros A.
        • Villa-Collar C.
        • Gutierrez A.R.
        • et al.
        Quality of life of myopic subjects with different methods of visual correction using the NEI RQL-42 questionnaire.
        Eye Contact Lens. 2012; 38: 116-121
        • Foster P.J.
        • Jiang Y.
        Epidemiology of myopia.
        Eye (Lond). 2014; 28: 202-208
        • Rahi J.S.
        • Cumberland P.M.
        • Peckham C.S.
        Myopia over the lifecourse: prevalence and early life influences in the 1958 British birth cohort.
        Ophthalmology. 2011; 118: 797-804
        • Park D.J.
        • Congdon N.G.
        Evidence for an “epidemic” of myopia.
        Ann Acad Med Singapore. 2004; 33: 21-26
        • Morgan I.
        • Rose K.
        How genetic is school myopia?.
        Prog Retin Eye Res. 2005; 24: 1-38
        • Wong T.Y.
        • Ferreira A.
        • Hughes R.
        • et al.
        Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review.
        Am J Ophthalmol. 2014; 157: 9-25 e12
        • Grzybowski A.
        • Kanclerz P.
        • Tsubota K.
        • et al.
        A review on the epidemiology of myopia in school children worldwide.
        BMC Ophthalmol. 2020; 20: 27
        • French A.N.
        • Morgan I.G.
        • Mitchell P.
        • Rose K.A.
        Risk factors for incident myopia in Australian schoolchildren: the Sydney Adolescent Vascular and Eye Study.
        Ophthalmology. 2013; 120: 2100-2108
        • Jones L.A.
        • Sinnott L.T.
        • Mutti D.O.
        • et al.
        Parental history of myopia, sports and outdoor activities, and future myopia.
        Invest Ophthalmol Vis Sci. 2007; 48: 3524-3532
        • Nickels S.
        • Hopf S.
        • Pfeiffer N.
        • Schuster A.K.
        Myopia is associated with education: results from NHANES 1999–2008.
        PLoS One. 2019; 14e0211196
        • Mountjoy E.
        • Davies N.M.
        • Plotnikov D.
        • et al.
        Education and myopia: assessing the direction of causality by mendelian randomisation.
        BMJ. 2018; 361k2022
        • Morgan I.G.
        • French A.N.
        • Ashby R.S.
        • et al.
        The epidemics of myopia: aetiology and prevention.
        Prog Retin Eye Res. 2018; 62: 134-149
        • Cuellar-Partida G.
        • Lu Y.
        • Kho P.F.
        • et al.
        Assessing the genetic predisposition of education on myopia: a Mendelian randomization study.
        Genet Epidemiol. 2016; 40: 66-72
        • Williams K.M.
        • Bertelsen G.
        • Cumberland P.
        • et al.
        Increasing prevalence of myopia in Europe and the impact of education.
        Ophthalmology. 2015; 122: 1489-1497
        • Han S.B.
        • Jang J.
        • Yang H.K.
        • et al.
        Prevalence and risk factors of myopia in adult Korean population: Korea national health and nutrition examination survey 2013–2014 (KNHANES VI).
        PLoS One. 2019; 14e0211204
        • Rudnicka A.R.
        • Kapetanakis V.V.
        • Wathern A.K.
        • et al.
        Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention.
        Br J Ophthalmol. 2016; 100: 882-890
        • Zadnik K.
        • Satariano W.A.
        • Mutti D.O.
        • et al.
        The effect of parental history of myopia on children’s eye size.
        JAMA. 1994; 271: 1323-1327
        • Liao C.
        • Ding X.
        • Han X.
        • et al.
        Role of parental refractive status in myopia progression: 12-year annual observation from the Guangzhou Twin Eye Study.
        Invest Ophthalmol Vis Sci. 2019; 60: 3499-3506
        • Pärssinen O.
        • Kauppinen M.
        Risk factors for high myopia: a 22-year follow-up study from childhood to adulthood.
        Acta Ophthalmol. 2019; 97: 510-518
        • Chen Y.
        • Zhang J.
        • Morgan I.G.
        • He M.
        Identifying children at risk of high myopia using population centile curves of refraction.
        PLoS One. 2016; 11e0167642
        • Luong L.Q.
        • Shu Y.H.
        • Modjtahedi B.S.
        • et al.
        Racial and ethnic differences in myopia progression in a large, diverse cohort of pediatric patients.
        Invest Ophthalmol Vis Sci. 2020; 61 (Available at: https://arvojournals.org/solr/searchresults.aspx?q=modjtahedi&restypeid=1.): 20
        • Chen Y.
        • Han X.
        • Guo X.
        • et al.
        Contribution of genome-wide significant single nucleotide polymorphisms in myopia prediction: findings from a 10-year cohort of Chinese twin children.
        Ophthalmology. 2019; 126: 1607-1614
        • Lin L.L.
        • Shih Y.F.
        • Hsiao C.K.
        • Chen C.J.
        Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000.
        Ann Acad Med Singapore. 2004; 33: 27-33
        • Jung S.K.
        • Lee J.H.
        • Kakizaki H.
        • Jee D.
        Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea.
        Invest Ophthalmol Vis Sci. 2012; 53: 5579-5583
        • Vitale S.
        • Ellwein L.
        • Cotch M.F.
        • et al.
        Prevalence of refractive error in the United States, 1999–2004.
        Arch Ophthalmol. 2008; 126: 1111-1119
        • Vitale S.
        • Sperduto R.D.
        • Ferris 3rd, F.L.
        Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004.
        Arch Ophthalmol. 2009; 127: 1632-1639
        • Willis J.R.
        • Vitale S.
        • Morse L.
        • et al.
        The prevalence of myopic choroidal neovascularization in the United States: analysis of the IRIS® Data Registry and NHANES.
        Ophthalmology. 2016; 123: 1771-1782
        • Theophanous C.
        • Modjtahedi B.S.
        • Batech M.
        • et al.
        Myopia prevalence and risk factors in children.
        Clin Ophthalmol. 2018; 12: 1581-1587
        • Multi-Ethnic Pediatric Eye Disease Study Group
        Prevalence of myopia and hyperopia in 6- to 72-month-old African American and Hispanic children: the Multi-Ethnic Pediatric Eye Disease Study.
        Ophthalmology. 2010; 117: 140-147 e143
        • Wen G.
        • Tarczy-Hornoch K.
        • McKean-Cowdin R.
        • et al.
        Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic white and Asian children: Multi-Ethnic Pediatric Eye Disease Study.
        Ophthalmology. 2013; 120: 2109-2116
        • Giordano L.
        • Friedman D.S.
        • Repka M.X.
        • et al.
        Prevalence of refractive error among preschool children in an urban population: the Baltimore Pediatric Eye Disease Study.
        Ophthalmology. 2009; 116 (746 e731–e734): 739-746
        • Kleinstein R.N.
        • Jones L.A.
        • Hullett S.
        • et al.
        Refractive error and ethnicity in children.
        Arch Ophthalmol. 2003; 121: 1141-1147
        • Reed D.S.
        • Ferris L.M.
        • Santamaria J.
        • et al.
        Prevalence of myopia in newly enlisted airmen at Joint Base San Antonio.
        Clin Ophthalmol. 2020; 14: 133-137
        • Kempen J.H.
        • Mitchell P.
        • Lee K.E.
        • et al.
        The prevalence of refractive errors among adults in the United States, Western Europe, and Australia.
        Arch Ophthalmol. 2004; 122: 495-505
        • Williams K.M.
        • Verhoeven V.J.
        • Cumberland P.
        • et al.
        Prevalence of refractive error in Europe: the European Eye Epidemiology (E(3)) Consortium.
        Eur J Epidemiol. 2015; 30: 305-315
        • Sheeladevi S.
        • Seelam B.
        • Nukella P.B.
        • et al.
        Prevalence of refractive errors, uncorrected refractive error, and presbyopia in adults in India: a systematic review.
        Indian J Ophthalmol. 2019; 67: 583-592
        • Dong Y.H.
        • Liu H.B.
        • Wang Z.H.
        • et al.
        [The epidemic status and secular trends of myopia prevalence for Chinese children and adolescents aged 7–18 years from 2005 to 2014].
        Zhonghua Yu Fang Yi Xue Za Zhi. 2017; 51: 285-289
        • Pan C.W.
        • Ramamurthy D.
        • Saw S.M.
        Worldwide prevalence and risk factors for myopia.
        Ophthalmic Physiol Opt. 2012; 32: 3-16
        • Ding B.Y.
        • Shih Y.F.
        • Lin L.L.K.
        • et al.
        Myopia among schoolchildren in East Asia and Singapore.
        Surv Ophthalmol. 2017; 62: 677-697
        • Lee J.H.
        • Jee D.
        • Kwon J.W.
        • Lee W.K.
        Prevalence and risk factors for myopia in a rural Korean population.
        Invest Ophthalmol Vis Sci. 2013; 54: 5466-5471
        • Yang L.
        • Vass C.
        • Smith L.
        • et al.
        Thirty-five-year trend in the prevalence of refractive error in Austrian conscripts based on 1.5 million participants.
        Br J Ophthalmol. 2020; 104: 1338-1344
        • Tsai T.H.
        • Liu Y.L.
        • Ma I.H.
        • et al.
        Evolution of the prevalence of myopia among Taiwanese schoolchildren: a review of survey data from 1983 to 2017.
        Ophthalmology. 2021; 128: 290-301
        • Yam J.C.
        • Tang S.M.
        • Kam K.W.
        • et al.
        High prevalence of myopia in children and their parents in Hong Kong Chinese population: the Hong Kong Children Eye Study.
        Acta Ophthalmol. 2020; Jan 24; (Online ahead of print)https://doi.org/10.1111/aos.14350
        • French A.N.
        • Morgan I.G.
        • Burlutsky G.
        • et al.
        Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren.
        Ophthalmology. 2013; 120: 1482-1491
        • Kanthan G.L.
        • Mitchell P.
        • Rochtchina E.
        • et al.
        Myopia and the long-term incidence of cataract and cataract surgery: the Blue Mountains Eye Study.
        Clin Exp Ophthalmol. 2014; 42: 347-353
        • Mitchell P.
        • Hourihan F.
        • Sandbach J.
        • Wang J.J.
        The relationship between glaucoma and myopia: the Blue Mountains Eye Study.
        Ophthalmology. 1999; 106: 2010-2015
        • The Eye Disease Case-Control Study Group
        Risk factors for idiopathic rhegmatogenous retinal detachment.
        Am J Epidemiol. 1993; 137: 749-757
        • Ohno-Matsui K.
        Pathologic myopia.
        Asia Pac J Ophthalmol (Phila). 2016; 5: 415-423
        • Cheung C.M.G.
        • Arnold J.J.
        • Holz F.G.
        • et al.
        Myopic choroidal neovascularization: review, guidance, and consensus statement on management.
        Ophthalmology. 2017; 124: 1690-1711
        • Cai X.B.
        • Zheng Y.H.
        • Chen D.F.
        • et al.
        Expanding the phenotypic and genotypic landscape of nonsyndromic high myopia: a cross-sectional study in 731 Chinese patients.
        Invest Ophthalmol Vis Sci. 2019; 60: 4052-4062
        • Iwase A.
        • Araie M.
        • Tomidokoro A.
        • et al.
        Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi Study.
        Ophthalmology. 2006; 113: 1354-1362
        • Van Newkirk M.R.
        The Hong Kong Vision Study: a pilot assessment of visual impairment in adults.
        Trans Am Ophthalmol Soc. 1997; 95: 715-749
        • Xu L.
        • Wang Y.
        • Li Y.
        • et al.
        Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study.
        Ophthalmology. 2006; 113 (1134. e1–e11)
        • Yamada M.
        • Hiratsuka Y.
        • Roberts C.B.
        • et al.
        Prevalence of visual impairment in the adult Japanese population by cause and severity and future projections.
        Ophthalmic Epidemiol. 2010; 17: 50-57
        • Wu L.
        • Sun X.
        • Zhou X.
        • Weng C.
        Causes and 3-year-incidence of blindness in Jing-an district, Shanghai, China 2001–2009.
        BMC Ophthalmol. 2011; 11: 10
        • Ghafour I.M.
        • Allan D.
        • Foulds W.S.
        Common causes of blindness and visual handicap in the west of Scotland.
        Br J Ophthalmol. 1983; 67: 209-213
        • Klaver C.C.
        • Wolfs R.C.
        • Vingerling J.R.
        • et al.
        Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study.
        Arch Ophthalmol. 1998; 116: 653-658
        • Krumpaszky H.G.
        • Ludtke R.
        • Mickler A.
        • et al.
        Blindness incidence in Germany. A population-based study from Wurttemberg-Hohenzollern.
        Ophthalmologica. 1999; 213: 176-182
        • Macdonald A.E.
        Causes of blindness in Canada: an analysis of 24,605 cases registered with the Canadian National Institute for the Blind.
        Can Med Assoc J. 1965; 92: 264-279
        • Cotter S.A.
        • Varma R.
        • Ying-Lai M.
        • et al.
        Causes of low vision and blindness in adult Latinos: the Los Angeles Latino Eye Study.
        Ophthalmology. 2006; 113: 1574-1582
        • Flitcroft D.I.
        The complex interactions of retinal, optical and environmental factors in myopia aetiology.
        Prog Retin Eye Res. 2012; 31: 622-660
        • Vongphanit J.
        • Mitchell P.
        • Wang J.J.
        Prevalence and progression of myopic retinopathy in an older population.
        Ophthalmology. 2002; 109: 704-711
        • Fricke T.R.
        • Jong M.
        • Naidoo K.S.
        • et al.
        Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling.
        Br J Ophthalmol. 2018; 102: 855-862
        • Ang M.
        • Wong C.W.
        • Hoang Q.V.
        • et al.
        Imaging in myopia: potential biomarkers, current challenges and future developments.
        Br J Ophthalmol. 2019; 103: 855-862
        • Tan N.Y.Q.
        • Sng C.C.A.
        • Jonas J.B.
        • et al.
        Glaucoma in myopia: diagnostic dilemmas.
        Br J Ophthalmol. 2019; 103: 1347-1355
        • Ohno-Matsui K.
        • Yoshida T.
        • Futagami S.
        • et al.
        Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia.
        Br J Ophthalmol. 2003; 87: 570-573
        • Naidoo K.S.
        • Fricke T.R.
        • Frick K.D.
        • et al.
        Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling.
        Ophthalmology. 2019; 126: 338-346
        • Vitale S.
        • Cotch M.F.
        • Sperduto R.
        • Ellwein L.
        Costs of refractive correction of distance vision impairment in the United States, 1999–2002.
        Ophthalmology. 2006; 113: 2163-2170
        • Fricke T.R.
        • Holden B.A.
        • Wilson D.A.
        • et al.
        Global cost of correcting vision impairment from uncorrected refractive error.
        Bull World Health Organ. 2012; 90: 728-738
        • Huang J.
        • Wen D.
        • Wang Q.
        • et al.
        Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis.
        Ophthalmology. 2016; 123: 697-708
        • Berntsen D.A.
        • Sinnott L.T.
        • Mutti D.O.
        • Zadnik K.
        A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation.
        Invest Ophthalmol Vis Sci. 2012; 53: 640-649
        • VanderVeen D.K.
        • Kraker R.T.
        • Pineles S.L.
        • et al.
        Use of orthokeratology for the prevention of myopic progression in children: a report by the American Academy of Ophthalmology.
        Ophthalmology. 2019; 126: 623-636
        • Walline J.J.
        • Walker M.K.
        • Mutti D.O.
        • et al.
        Effect of high add power, medium add power, or single-vision contact lenses on myopia progression in children: the Blink Randomized Clinical Trial.
        JAMA. 2020; 324: 571-580
        • Chia A.
        • Chua W.H.
        • Cheung Y.B.
        • et al.
        Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2).
        Ophthalmology. 2012; 119: 347-354
        • Chua W.H.
        • Balakrishnan V.
        • Chan Y.H.
        • et al.
        Atropine for the treatment of childhood myopia.
        Ophthalmology. 2006; 113: 2285-2291
        • Shih Y.F.
        • Chen C.H.
        • Chou A.C.
        • et al.
        Effects of different concentrations of atropine on controlling myopia in myopic children.
        J Ocul Pharmacol Ther. 1999; 15: 85-90
        • Yen M.Y.
        • Liu J.H.
        • Kao S.C.
        • Shiao C.H.
        Comparison of the effect of atropine and cyclopentolate on myopia.
        Ann Ophthalmol. 1989; 21 (187): 180-182
        • Wu P.C.
        • Yang Y.H.
        • Fang P.C.
        The long-term results of using low-concentration atropine eye drops for controlling myopia progression in schoolchildren.
        J Ocul Pharmacol Ther. 2011; 27: 461-466
        • Chia A.
        • Lu Q.S.
        • Tan D.
        Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops.
        Ophthalmology. 2016; 123: 391-399
        • Pineles S.L.
        • Kraker R.T.
        • VanderVeen D.K.
        • et al.
        Atropine for the prevention of myopia progression in children: a report by the American Academy of Ophthalmology.
        Ophthalmology. 2017; 124: 1857-1866
        • Yam J.C.
        • Li F.F.
        • Zhang X.
        • et al.
        Two-year clinical trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: phase 2 report.
        Ophthalmology. 2020; 127: 910-919
        • Kinoshita N.
        • Konno Y.
        • Hamada N.
        • et al.
        Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results.
        Jpn J Ophthalmol. 2018; 62: 544-553
        • Mutti D.O.
        • Mitchell G.L.
        • Moeschberger M.L.
        • et al.
        Parental myopia, near work, school achievement, and children’s refractive error.
        Invest Ophthalmol Vis Sci. 2002; 43: 3633-3640
        • Parssinen O.
        • Lyyra A.L.
        Myopia and myopic progression among schoolchildren: a three-year follow-up study.
        Invest Ophthalmol Vis Sci. 1993; 34: 2794-2802
        • Rose K.A.
        • Morgan I.G.
        • Ip J.
        • et al.
        Outdoor activity reduces the prevalence of myopia in children.
        Ophthalmology. 2008; 115: 1279-1285
        • Guo Y.
        • Liu L.J.
        • Tang P.
        • et al.
        Outdoor activity and myopia progression in 4-year follow-up of Chinese primary school children: the Beijing Children Eye Study.
        PLoS One. 2017; 12e0175921
        • Guggenheim J.A.
        • Northstone K.
        • McMahon G.
        • et al.
        Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study.
        Invest Ophthalmol Vis Sci. 2012; 53: 2856-2865
        • Parssinen O.
        • Kauppinen M.
        • Viljanen A.
        The progression of myopia from its onset at age 8–12 to adulthood and the influence of heredity and external factors on myopic progression. A 23-year follow-up study.
        Acta Ophthalmol. 2014; 92: 730-739
        • He M.
        • Xiang F.
        • Zeng Y.
        • et al.
        Effect of time spent outdoors at school on the development of myopia among children in china: a randomized clinical trial.
        JAMA. 2015; 314: 1142-1148
        • Sherwin J.C.
        • Reacher M.H.
        • Keogh R.H.
        • et al.
        The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis.
        Ophthalmology. 2012; 119: 2141-2151
        • Xiong S.
        • Sankaridurg P.
        • Naduvilath T.
        • et al.
        Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review.
        Acta Ophthalmol. 2017; 95: 551-566
        • Wu P.C.
        • Chen C.T.
        • Lin K.K.
        • et al.
        Myopia prevention and outdoor light intensity in a school-based cluster randomized trial.
        Ophthalmology. 2018; 125: 1239-1250
        • Gwiazda J.
        • Deng L.
        • Manny R.
        • et al.
        Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial.
        Invest Ophthalmol Vis Sci. 2014; 55: 752-758
        • Wu P.C.
        • Chen C.T.
        • Chang L.C.
        • et al.
        Increased time outdoors is followed by reversal of the long-term trend to reduced visual acuity in Taiwan primary school students.
        Ophthalmology. 2020; 127: 1462-1469