Advertisement

Assessment of Macular Microvasculature in Healthy Eyes of Infants and Children Using OCT Angiography

      Purpose

      To assess macular vasculature in healthy infants and children using OCT angiography (OCTA).

      Design

      Prospective cross-sectional study.

      Participants

      One hundred thirty-five normal maculae of 89 healthy infants and children (mean age, 8.5±5.3 years; range, 9 weeks–17 years) treated at the Duke University Eye Center.

      Methods

      We imaged 135 maculae of 89 pediatric patients using the standard Spectralis tabletop and investigational Spectralis with Flex module devices, both equipped with investigational OCTA software (Heidelberg Engineering, Heidelberg, Germany). OCT angiography images of the superficial vascular complex (SVC) and deep vascular complex (DVC) were analyzed for foveal avascular zone (FAZ) area and superficial and deep vessel density. We assessed effects of age, gender, race, axial length (AL), and central subfield thickness on FAZ and vessel density. Patients with both eyes imaged were assessed for agreement between the FAZ and vessel densities of the left and right eyes.

      Main Outcome Measures

      The FAZ area, as well as vessel area density (VAD) and vessel length density (VLD) in the SVC and DVC.

      Results

      The FAZ varied significantly with race; white patients showed a significantly smaller FAZ than black patients (mean difference, 0.11 mm2; P = 0.004). The FAZ did not vary with age, gender, or AL (P > 0.05). In the SVC, VAD and VLD varied significantly with age (P < 0.001) and AL (R2 = 0.46; P < 0.001) but not gender (P > 0.05). The SVC VLD was significantly different between races and ethnicities (P = 0.037), but VAD was not (P < 0.05). In the DVC, VAD and VLD also varied significantly with age (P < 0.001) and AL (R2 = 0.46; P < 0.001) but not gender or race (P > 0.05). There was excellent agreement between the right and left eyes for FAZ (intraclass correlation [ICC], 0.97), SVC VLD (ICC, 1.00), and DVC VLD (ICC, 1.00).

      Conclusions

      Quantitative studies of pediatric perifoveal vasculature should consider age, race, and AL. In eyes with unilateral disease, the perifoveal vasculature in the unaffected eye may be used as a control comparison because there is excellent agreement between eyes.

      Abbreviations and Acronyms:

      AL (axial length), CSFT (central subfield thickness), DVC (deep vascular complex), FAZ (foveal avascular zone), ICC (intraclass correlation coefficient), OCTA (OCT angiography), SVC (superficial vascular complex), VAD (vessel area density), VLD (vessel length density)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jia Y.
        • Bailey S.T.
        • Hwang T.S.
        • et al.
        Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye.
        Proc Natl Acad Sci U S A. 2015; 112: E2395-E2402
        • Kashani A.H.
        • Chen C.-L.
        • Gahm J.K.
        • et al.
        Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications.
        Prog Retin Eye Res. 2017; 60: 66-100
        • Al-Sheikh M.
        • Akil H.
        • Pfau M.
        • Sadda S.R.
        Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy.
        Invest Ophthalmol Vis Sci. 2016; 57: 3907-3913
        • Ishibazawa A.
        • Nagaoka T.
        • Takahashi A.
        • et al.
        Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study.
        Am J Ophthalmol. 2015; 160 (e31): 35-44
        • Agemy S.A.
        • Scripsema N.K.
        • Shah C.M.
        • et al.
        Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients.
        Retina. 2015; 35: 2353-2363
        • Niestrata-Ortiz M.
        • Fichna P.
        • Stankiewicz W.
        • Stopa M.
        Enlargement of the foveal avascular zone detected by optical coherence tomography angiography in diabetic children without diabetic retinopathy.
        Graefes Arch Clin Exp Ophthalmol. 2019; 257: 689-697
        • Li T.
        • Jia Y.
        • Wang S.
        • et al.
        Retinal microvascular abnormalities in children with type 1 diabetes mellitus without visual impairment or diabetic retinopathy.
        Invest Ophthalmol Vis Sci. 2019; 60: 990-998
        • Hsu S.T.
        • Finn A.P.
        • Chen X.
        • et al.
        Macular microvascular findings in familial exudative vitreoretinopathy on optical coherence tomography angiography.
        Ophthalmic Surg Lasers Imaging Retina. 2019; 50: 322-329
        • Carpineto P.
        • Mastropasqua R.
        • Marchini G.
        • et al.
        Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography.
        Br J Ophthalmol. 2016; 100: 671-676
        • Huang D.
        • Jia Y.
        • Rispoli M.
        • et al.
        OCT angiography of time course of choroidal neovascularization in response to anti-angiogenic treatment.
        Retina. 2015; 35: 2260-2264
        • Ghassemi F.
        • Mirshahi R.
        • Bazvand F.
        • et al.
        The quantitative measurements of foveal avascular zone using optical coherence tomography angiography in normal volunteers.
        J Curr Ophthalmol. 2017; 29: 293-299
        • Yu J.
        • Jiang C.
        • Wang X.
        • et al.
        Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study.
        Invest Ophthalmol Vis Sci. 2015; 56: 3212-3217
        • Linderman R.
        • Salmon A.E.
        • Strampe M.
        • et al.
        Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling.
        Transl Vis Sci Technol. 2017; 6: 16
        • Guo J.
        • She X.
        • Liu X.
        • Sun X.
        Repeatability and reproducibility of foveal avascular zone area measurements using AngioPlex spectral domain optical coherence tomography angiography in healthy subjects.
        Ophthalmologica. 2017; 237: 21-28
        • Iafe N.A.
        • Phasukkijwatana N.
        • Chen X.
        • Sarraf D.
        Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography.
        Invest Ophthalmol Vis Sci. 2016; 57: 5780-5787
        • Campbell J.P.
        • Zhang M.
        • Hwang T.S.
        • et al.
        Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography.
        Sci Rep. 2017; 7: 42201
        • Wang Q.
        • Chan S.
        • Yang J.Y.
        • et al.
        Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography.
        Am J Ophthalmol. 2016; 168: 95-109
        • Borrelli E.
        • Lonngi M.
        • Balasubramanian S.
        • et al.
        Macular microvascular networks in healthy pediatric subjects.
        Retina. 2019; 39: 1216-1224
        • Leng Y.
        • Tam E.K.
        • Falavarjani K.G.
        • Tsui I.
        Effect of age and myopia on retinal microvasculature.
        Ophthalmic Surg Lasers Imaging Retina. 2018; 49: 925-931
        • Falavarjani K.G.
        • Shenazandi H.
        • Naseri D.
        • et al.
        Foveal avascular zone and vessel density in healthy subjects: an optical coherence tomography angiography study.
        J Ophthalmic Vis Res. 2018; 13: 260-265
        • Coscas F.
        • Sellam A.
        • Glacet-Bernard A.
        • et al.
        Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography.
        Invest Ophthalmol Vis Sci. 2016; 57: Oct211-Oct223
        • Falavarjani K.G.
        • Sarraf D.
        • Tsui I.
        Optical coherence tomography angiography of the macula in adults with a history of preterm birth.
        Ophthalmic Surg Lasers Imaging Retina. 2018; 49: 122-125
        • Falavarjani K.G.
        • Iafe N.A.
        • Velez F.G.
        • et al.
        Optical coherence tomography angiography of the fovea in children born preterm.
        Retina. 2017; 37: 2289-2294
        • Vajzovic L.
        • Hendrickson A.E.
        • O’Connell R.V.
        • et al.
        Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology.
        Am J Ophthalmol. 2012; 154 (779–789.e772)
      1. Hendrickson A, Possin D, Vajzovic L, Toth CA. Histologic development of the human fovea from midgestation to maturity. Am J Ophthalmol.154(5):767–778.e762.

        • Vajzovic L.
        • Rothman A.L.
        • Tran-Viet D.
        • et al.
        Delay in retinal photoreceptor development in very preterm compared to term infants.
        Invest Ophthalmol Vis Sci. 2015; 56: 908-913
        • Provis J.M.
        • Hendrickson A.E.
        The foveal avascular region of developing human retina.
        Arch Ophthalmol. 2008; 126: 507-511
        • Provis J.M.
        • Diaz C.M.
        • Dreher B.
        Ontogeny of the primate fovea: a central issue in retinal development.
        Prog Neurobiol. 1998; 54: 549-581
        • Maldonado R.S.
        • O’Connell R.V.
        • Sarin N.
        • et al.
        Dynamics of human foveal development after premature birth.
        Ophthalmology. 2011; 118: 2315-2325
        • Lee H.
        • Purohit R.
        • Sheth V.
        • et al.
        Retinal development in infants and young children with achromatopsia.
        Ophthalmology. 2015; 122: 2145-2147
        • Hsu S.T.
        • Chen X.
        • Ngo H.T.
        • et al.
        Imaging infant retinal vasculature with OCT angiography.
        Ophthalmol Retina. 2019; 3: 95-96
        • Hsu S.
        • Chen X.
        • House R.J.
        • et al.
        Visualizing macular microvasculature anomalies in 2 infants with treated retinopathy of prematurity.
        JAMA Ophthalmol. 2018; 136: 1422-1424
        • House R.J.
        • Hsu S.T.
        • Thomas A.S.
        • et al.
        Vascular findings in a small retinoblastoma tumor using OCT angiography.
        Ophthalmol Retina. 2019; 3: 194-195
        • Chen X.
        • Viehland C.
        • Carrasco-Zevallos O.M.
        • et al.
        Microscope-integrated optical coherence tomography angiography in the operating room in young children with retinal vascular disease.
        JAMA Ophthalmol. 2017; 135: 483-486
        • Zhang Z.
        • Huang X.
        • Meng X.
        • et al.
        In vivo assessment of macula in eyes of healthy children 8 to 16 years old using optical coherence tomography angiography.
        Sci Rep. 2017; 7: 8936
        • Wagner-Schuman M.
        • Dubis A.M.
        • Nordgren R.N.
        • et al.
        Race- and sex-related differences in retinal thickness and foveal pit morphology.
        Invest Ophthalmol Vis Sci. 2011; 52: 625-634
        • Pilat A.V.
        • Proudlock F.A.
        • Mohammad S.
        • Gottlob I.
        Normal macular structure measured with optical coherence tomography across ethnicity.
        Br J Ophthalmol. 2014; 98: 941-945
        • Doguizi S.
        • Yilmazoglu M.
        • Kiziltoprak H.
        • et al.
        Quantitative analysis of retinal microcirculation in children with hyperopic anisometropic amblyopia: an optical coherence tomography angiography study.
        J AAPOS. 2019; 23: 201.e1-201.e5
        • Durbin M.K.
        • An L.
        • Shemonski N.D.
        • et al.
        Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy.
        JAMA Ophthalmol. 2017; 135: 370-376
        • Kaur S.
        • Singh S.R.
        • Sukhija J.
        • Dogra M.R.
        Comparison of quantitative measurement of foveal avascular zone and macular vessel density in eyes of children with amblyopia and healthy controls: an optical coherence tomography angiography study.
        J AAPOS. 2018; 22: 164-165
        • Matsushita I.
        • Nagata T.
        • Hayashi T.
        • et al.
        Foveal hypoplasia in patients with stickler syndrome.
        Ophthalmology. 2017; 124: 896-902
        • Kim A.Y.
        • Rodger D.C.
        • Shahidzadeh A.
        • et al.
        Quantifying retinal microvascular changes in uveitis using spectral-domain optical coherence tomography angiography.
        Am J Ophthalmol. 2016; 171: 101-112
        • Stanga P.E.
        • Romano F.
        • Chwiejczak K.
        • et al.
        Swept-source optical coherence tomography angiography assessment of fellow eyes in Coats disease.
        Retina. 2019; 39: 608-613
        • Bayoumi N.H.
        Fellow eye in unilateral primary congenital glaucoma.
        J Curr Glaucoma Pract. 2017; 11: 28-30
        • Rudnicka A.R.
        • Burk R.O.
        • Edgar D.F.
        • Fitzke F.W.
        Magnification characteristics of fundus imaging systems.
        Ophthalmology. 1998; 105: 2186-2192
        • Frangi A.F.
        • Niessen W.J.
        • Vincken K.L.
        • Viergever M.A.
        Multiscale Vessel Enhancement Filtering.
        Springer, Berlin, Heidelberg1998
        • Li C.
        • Xu C.
        • Gui C.
        • Fox M.D.
        Distance regularized level set evolution and its application to image segmentation.
        Trans Img Proc. 2010; 19: 3243-3254
        • Schindelin J.
        • Arganda-Carreras I.
        • Frise E.
        • et al.
        Fiji—an open source platform for biological image analysis.
        Nat Methods. 2012; 9: 676-682
        • Spaide R.F.
        • Curcio C.A.
        Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes.
        JAMA Ophthalmol. 2017; 135: 259-262
        • Sampson D.M.
        • Gong P.
        • An D.
        • et al.
        Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography.
        Invest Ophthalmol Vis Sci. 2017; 58: 3065-3072