Advertisement

Phenotypic Characteristics of a French Cohort of Patients with X-Linked Retinoschisis

  • Raphaëlle Orès
    Affiliations
    Centre de Maladies Rares “Dystrophies Rétiniennes d’Origine Génétique,” DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
    Search for articles by this author
  • Saddek Mohand-Said
    Affiliations
    Centre de Maladies Rares “Dystrophies Rétiniennes d’Origine Génétique,” DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Search for articles by this author
  • Claire-Marie Dhaenens
    Affiliations
    Department of Biochemistry and Molecular Biology-UF Génopathies, Université Lille, Inserm UMR-S 1172, CHU Lille, Lille, France
    Search for articles by this author
  • Aline Antonio
    Affiliations
    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Search for articles by this author
  • Christina Zeitz
    Affiliations
    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Search for articles by this author
  • Edouard Augstburger
    Affiliations
    Centre de Maladies Rares “Dystrophies Rétiniennes d’Origine Génétique,” DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
    Search for articles by this author
  • Camille Andrieu
    Affiliations
    Centre de Maladies Rares “Dystrophies Rétiniennes d’Origine Génétique,” DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
    Search for articles by this author
  • José-Alain Sahel
    Affiliations
    Centre de Maladies Rares “Dystrophies Rétiniennes d’Origine Génétique,” DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France

    Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    Search for articles by this author
  • Isabelle Audo
    Correspondence
    Correspondence: Isabelle Audo, Institut de la Vision, Department of Genetics, Team S6-AZ, Sorbonne Université, 17, rue Moreau, F-75012 Paris, France.
    Affiliations
    Centre de Maladies Rares “Dystrophies Rétiniennes d’Origine Génétique,” DHU Sight Restore INSERM-DHOS CIC 1423, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Search for articles by this author

      Purpose

      To analyze the retinal structure in patients with X-linked retinoschisis (XLRS) using spectral-domain OCT and to correlate the morphologic findings with visual acuity, electroretinographic results, and patient age.

      Design

      Retrospective, observational study.

      Participants

      Data from 52 consecutive male patients with molecularly confirmed XLRS were collected retrospectively.

      Methods

      Complete clinical evaluation included best-corrected visual acuity, full-field electroretinography, fundus photography, spectral-domain OCT, and fundus autofluorescence. Spectral-domain OCT images were analyzed to determine full thickness of the retina and tomographic structural changes.

      Main Outcome Measures

      Relationships between age, OCT, and visual acuity were assessed.

      Results

      One hundred four eyes of 52 patients were included. The mean age at inclusion was 24±15 years (range, 3–57 years). The best-corrected visual acuity ranged from no light perception to 0.1 logarithm of the minimum angle of resolution (mean, 0.6±0.38 logarithm of the minimum angle of resolution). Macular schisis was found in 88% of eyes and macular atrophy was found in 11% of eyes, whereas peripheral schisis was present in 30% of eyes. A spoke-wheel pattern of high and low intensity was the most frequently observed fundus autofluorescence abnormality (51/94 eyes [54%]). The b-to-a amplitude ratio on bright-flash dark-adapted electroretinography was reduced significantly in 45 of 64 eyes (70%). Spectral-domain OCT was available for 97 eyes and showed foveoschisis in 76 of 97 eyes (78%), parafoveal schisis in 10 of 97 eyes (10%), and foveal atrophy in 11 of 97 eyes (11%). Mean central macular thickness (CMT) was of 373.6±140 μm. Cystoid changes were localized mainly in the inner nuclear layer (85/97 eyes [88%]). Qualitative defects in photoreceptor structures were found in most eyes (79/97 eyes [81%]), and the most frequent abnormality was an interruption of the photoreceptor cell outer segment tips (79/79 eyes [100%]). Older age correlated well with lower CMT (correlation coefficient [CC], –0.44; P < 0.001) and with lower photoreceptor outer segment (PROS) length (CC, –0.42; P < 0.001). Lower visual acuity correlated strongly with lower PROS length (CC, –0.53; P < 0.001).

      Conclusions

      This study underlined the wide variety of clinical features of XLRS. It highlighted the correlation between visual acuity, patient age, and OCT features, emphasizing the relevance of the latter as potential outcome measure in clinical trials.

      Abbreviations and Acronyms:

      BCVA (best corrected visual acuity), CC (correlation coefficient), CMT (central macular thickness), DA (dark-adapted), ERG (electroretinography), EZ (ellipsoid zone), FAF (fundus autofluorescence), GCL (ganglion cell layer), IR (infrared reflectance), IZ (interdigitation zone), LA (light-adapted), ONL (outer nuclear layer), PROS (photoreceptor outer segment), RNFL (retinal nerve fiber layer), RPE (retinal pigment epithelium), XLRS (X-linked retinoschisis)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • George N.D.
        • Yates J.R.
        • Moore A.T.
        X linked retinoschisis.
        Br J Ophthalmol. 1995; 79: 697-702
        • Haas J.
        Ueber das Zusammenvorkommen von Veraenderungen der Retina und Choroidea.
        Arch Augenheilkd. 1898; 37: 343-348
        • Pagenstecher H.E.
        Ueber eine unter dem Bilde der Netzhautablosung verlaufende, erbliche Erkrankung der Retina.
        Graefes Arch Clin Exp Ophthalmol. 1913; 86: 457-462
        • Wilczek M.
        Ein der Netzhautspaltung (Retinoschisis) mit einer Offnung.
        Zeit Augenheilkd. 1935; 5: 13-17
        • Sauer C.G.
        • Gehrig A.
        • Warneke-Wittstock R.
        • et al.
        Positional cloning of the gene associated with X-linked juvenile retinoschisis.
        Nat Genet. 1997; 17: 164-170
        • Gehrig A.E.
        • Warneke-Wittstock R.
        • Sauer C.G.
        • Weber B.H.
        Isolation and characterization of the murine X-linked juvenile retinoschisis (Rs1h) gene.
        Mamm Genome. 1999; 10: 303-307
        • Weber B.H.F.
        • Schrewe H.
        • Molday L.L.
        • et al.
        Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure.
        Proc Natl Acad Sci U S A. 2002; 99: 6222-6227
        • Molday L.L.
        • Hicks D.
        • Sauer C.G.
        • et al.
        Expression of X-linked retinoschisis protein RS1 in photoreceptor and bipolar cells.
        Invest Ophthalmol Vis Sci. 2001; 42: 816-825
        • Wu W.W.H.
        • Wong J.P.
        • Kast J.
        • Molday R.S.
        RS1, a discoidin domain-containing retinal cell adhesion protein associated with X-linked retinoschisis, exists as a novel disulfide-linked octamer.
        J Biol Chem. 2005; 280: 10721-10730
        • Ou J.
        • Vijayasarathy C.
        • Ziccardi L.
        • et al.
        Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer.
        J Clin Invest. 2015; 125: 2891-2903
        • The Retinoschisis Consortium
        Functional implications of the spectrum of mutations found in 234 cases with X-linked juvenile retinoschisis.
        Hum Mol Genet. 1998; 7: 1185-1192
        • Bush R.A.
        • Zeng Y.
        • Colosi P.
        • et al.
        Preclinical dose-escalation study of intravitreal AAV-RS1 gene therapy in a mouse model of X-linked retinoschisis: dose-dependent expression and improved retinal structure and function.
        Hum Gene Ther. 2016; 27: 376-389
        • Sengillo J.D.
        • Justus S.
        • Tsai Y.-T.
        • et al.
        Gene and cell-based therapies for inherited retinal disorders: an update.
        Am J Med Genet C Semin Med Genet. 2016; 172: 349-366
        • Molday R.S.
        • Kellner U.
        • Weber B.H.F.
        X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms.
        Prog Retin Eye Res. 2012; 31: 195-212
        • Apushkin M.A.
        • Fishman G.A.
        • Janowicz M.J.
        Correlation of optical coherence tomography findings with visual acuity and macular lesions in patients with X-linked retinoschisis.
        Ophthalmology. 2005; 112: 495-501
        • Andreoli M.T.
        • Lim J.I.
        Optical coherence tomography retinal thickness and volume measurements in X-linked retinoschisis.
        Am J Ophthalmol. 2014; 158: 567-573
        • Yang H.S.
        • Lee J.B.
        • Yoon Y.H.
        • Lee J.Y.
        Correlation between spectral-domain OCT findings and visual acuity in X-linked retinoschisis.
        Invest Ophthalmol Vis Sci. 2014; 55: 3029-3036
        • McCulloch D.L.
        • Marmor M.F.
        • Brigell M.G.
        • et al.
        ISCEV Standard for full-field clinical electroretinography (2015 update).
        Doc Ophthalmol. 2015; 130: 1-12
        • Staurenghi G.
        • Sadda S.
        • Chakravarthy U.
        • et al.
        Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus.
        Ophthalmology. 2014; 121: 1572-1578
        • Sikkink S.K.
        • Biswas S.
        • Parry N.R.A.
        • et al.
        X-linked retinoschisis: an update.
        J Med Genet. 2007; 44: 225-232
        • Wang N.-K.
        • Liu L.
        • Chen H.-M.
        • et al.
        Clinical presentations of X-linked retinoschisis in Taiwanese patients confirmed with genetic sequencing.
        Mol Vis. 2015; 21: 487-501
        • Renner A.B.
        • Kellner U.
        • Fiebig B.
        • et al.
        ERG variability in X-linked congenital retinoschisis patients with mutations in the RS1 gene and the diagnostic importance of fundus autofluorescence and OCT.
        Doc Ophthalmol. 2008; 116: 97-109
        • Vincent A.
        • Robson A.G.
        • Neveu M.M.
        • et al.
        A phenotype-genotype correlation study of X-linked retinoschisis.
        Ophthalmology. 2013; 120: 1454-1464
        • Tsang S.H.
        • Vaclavik V.
        • Bird A.C.
        • et al.
        Novel phenotypic and genotypic findings in X-linked retinoschisis.
        Arch Ophthalmol. 2007; 125: 259-267
        • Robson A.G.
        • Saihan Z.
        • Jenkins S.A.
        • et al.
        Functional characterisation and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity.
        Br J Ophthalmol. 2006; 90: 472-479
        • Freund K.B.
        • Mrejen S.
        • Jung J.
        • et al.
        Increased fundus autofluorescence related to outer retinal disruption.
        JAMA Ophthalmol. 2013; 131: 1645-1649
        • Sallo F.B.
        • Leung I.
        • Zeimer M.
        • et al.
        Abnormal retinal reflectivity to short-wavelength light in type 2 idiopathic macular telangiectasia.
        Retina. 2018; 38: S79-S88
        • Lima L.H.
        • Burke T.
        • Greenstein V.C.
        • et al.
        Progressive constriction of the hyperautofluorescent ring in retinitis pigmentosa.
        Am J Ophthalmol. 2012; 153: 718-727
        • Schmitz-Valckenberg S.
        • Holz F.G.
        • Bird A.C.
        • Spaide R.F.
        Fundus autofluorescence imaging: review and perspectives.
        Retina. 2008; 28: 385-409
        • Ozdemir H.
        • Karacorlu S.
        • Karacorlu M.
        Optical coherence tomography findings in familial foveal retinoschisis.
        Am J Ophthalmol. 2004; 137: 179-181
        • Brucker A.J.
        • Spaide R.F.
        • Gross N.
        • et al.
        Optical coherence tomography of X-linked retinoschisis.
        Retina. 2004; 24: 151-152
        • Gerth C.
        • Zawadzki R.J.
        • Werner J.S.
        • Héon E.
        Retinal morphological changes of patients with X-linked retinoschisis evaluated by Fourier-domain optical coherence tomography.
        Arch Ophthalmol. 2008; 126: 807-811
        • Gregori N.Z.
        • Berrocal A.M.
        • Gregori G.
        • et al.
        Macular spectral-domain optical coherence tomography in patients with X linked retinoschisis.
        Br J Ophthalmol. 2009; 93: 373-378
        • Yu J.
        • Ni Y.
        • Keane P.A.
        • et al.
        Foveomacular schisis in juvenile X-linked retinoschisis: an optical coherence tomography study.
        Am J Ophthalmol. 2010; 149: 973-978
        • Gregori N.Z.
        • Lam B.L.
        • Gregori G.
        • et al.
        Wide-field spectral-domain optical coherence tomography in patients and carriers of X-linked retinoschisis.
        Ophthalmology. 2013; 120: 169-174
        • Manschot W.A.
        Pathology of hereditary juvenile retinoschisis.
        Arch Ophthalmol. 1972; 88: 131-138
        • Yanoff M.
        • Kertesz Rahn E.
        • Zimmerman L.E.
        Histopathology of juvenile retinoschisis.
        Arch Ophthalmol. 1968; 79: 49-53
        • Shimozono M.
        • Oishi A.
        • Hata M.
        • et al.
        The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery.
        Am J Ophthalmol. 2012; 153: 698-704
        • Hashimoto Y.
        • Saito W.
        • Saito M.
        • et al.
        Retinal outer layer thickness increases after vitrectomy for epiretinal membrane, and visual improvement positively correlates with photoreceptor outer segment length.
        Graefes Arch Clin Exp Ophthalmol. 2014; 252: 219-226
        • Shiono A.
        • Kogo J.
        • Klose G.
        • et al.
        Photoreceptor outer segment length: a prognostic factor for idiopathic epiretinal membrane surgery.
        Ophthalmology. 2013; 120: 788-794
        • Forooghian F.
        • Stetson P.F.
        • Meyer S.A.
        • et al.
        Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.
        Retina. 2010; 30: 63-70
        • Bennett L.D.
        • Wang Y.-Z.
        • Klein M.
        • et al.
        Structure/psychophysical relationships in X-linked retinoschisis.
        Invest Ophthalmol Vis Sci. 2016; 57: 332-337
        • Menke M.N.
        • Feke G.T.
        • Hirose T.
        Effect of aging on macular features of X-linked retinoschisis assessed with optical coherence tomography.
        Retina. 2011; 31: 1186-1192
        • Pimenides D.
        • George N.D.L.
        • Yates J.R.W.
        • et al.
        X-linked retinoschisis: clinical phenotype and RS1 genotype in 86 UK patients.
        J Med Genet. 2005; 42: e35
        • Kjellstrom S.
        • Bush R.A.
        • Zeng Y.
        • et al.
        Retinoschisin gene therapy and natural history in the Rs1h-KO mouse: long-term rescue from retinal degeneration.
        Invest Ophthalmol Vis Sci. 2007; 48: 3837-3845
        • Bradshaw K.
        • George N.
        • Moore A.
        • Trump D.
        Mutations of the XLRS1 gene cause abnormalities of photoreceptor as well as inner retinal responses of the ERG.
        Doc Ophthalmol. 1999; 98: 153-173
        • Peachey N.S.
        • Fishman G.A.
        • Derlacki D.J.
        • Brigell M.G.
        Psychophysical and electroretinographic findings in X-linked juvenile retinoschisis.
        Arch Ophthalmol. 1987; 105: 513-516
        • Bowles K.
        • Cukras C.
        • Turriff A.
        • et al.
        X-linked retinoschisis: RS1 mutation severity and age affect the ERG phenotype in a cohort of 68 affected male subjects.
        Invest Ophthalmol Vis Sci. 2011; 52: 9250-9256
        • Eksandh L.
        • Andréasson S.
        • Abrahamson M.
        Juvenile X-linked retinoschisis with normal scotopic b-wave in the electroretinogram at an early stage of the disease.
        Ophthalmic Genet. 2005; 26: 111-117
        • Sergeev Y.V.
        • Caruso R.C.
        • Meltzer M.R.
        • et al.
        Molecular modeling of retinoschisin with functional analysis of pathogenic mutations from human X-linked retinoschisis.
        Hum Mol Genet. 2010; 19: 1302-1313
        • Sergeev Y.V.
        • Vitale S.
        • Sieving P.A.
        • et al.
        Molecular modeling indicates distinct classes of missense variants with mild and severe XLRS phenotypes.
        Hum Mol Genet. 2013; 22: 4756-4767
        • Kondo M.
        • Sieving P.A.
        Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
        Invest Ophthalmol Vis Sci. 2001; 42: 305-312
        • Oishi A.
        • Otani A.
        • Sasahara M.
        • et al.
        Photoreceptor integrity and visual acuity in cystoid macular oedema associated with retinitis pigmentosa.
        Eye. 2009; 23: 1411-1416
        • Alasil T.
        • Keane P.A.
        • Updike J.F.
        • et al.
        Relationship between optical coherence tomography retinal parameters and visual acuity in diabetic macular edema.
        Ophthalmology. 2010; 117: 2379-2386
        • Hayashi H.
        • Yamashiro K.
        • Tsujikawa A.
        • et al.
        Association between foveal photoreceptor integrity and visual outcome in neovascular age-related macular degeneration.
        Am J Ophthalmol. 2009; 148: 83-89
        • Lesch B.
        • Szabó V.
        • Kánya M.
        • et al.
        Clinical and genetic findings in Hungarian patients with X-linked juvenile retinoschisis.
        Mol Vis. 2008; 14: 2321-2332
        • Kjellström S.
        • Vijayasarathy C.
        • Ponjavic V.
        • et al.
        Long-term 12-year follow-up of X-linked congenital retinoschisis.
        Ophthalmic Genet. 2010; 31: 114-125
        • Piao C.-H.
        • Kondo M.
        • Nakamura M.
        • et al.
        Multifocal electroretinograms in X-linked retinoschisis.
        Invest Ophthalmol Vis Sci. 2003; 44: 4920-4930
        • Kim L.S.
        • Seiple W.
        • Fishman G.A.
        • Szlyk J.P.
        Multifocal ERG findings in carriers of X-linked retinoschisis.
        Doc Ophthalmol. 2007; 114: 21-26
        • Hood D.C.
        • Frishman L.J.
        • Saszik S.
        • Viswanathan S.
        Retinal origins of the primate multifocal ERG: implications for the human response.
        Invest Ophthalmol Vis Sci. 2002; 43: 1673-1685
        • Khan N.W.
        • Jamison J.A.
        • Kemp J.A.
        • Sieving P.A.
        Analysis of photoreceptor function and inner retinal activity in juvenile X-linked retinoschisis.
        Vision Res. 2001; 41: 3931-3942