Advertisement

Anatomic Clinical Trial Endpoints for Nonexudative Age-Related Macular Degeneration

      Topic

      To review the role of anatomic endpoints in clinical trials for the study of nonexudative age-related macular degeneration (AMD) with an emphasis on a novel composite endpoint for the study of emerging therapies for intermediate AMD (iAMD).

      Clinical Relevance

      Unlike clinical trials for exudative AMD, it is impractical to use the change in visual acuity (VA) as a primary endpoint for the study of nonexudative AMD. By the time VA has been lost in nonexudative AMD, proof-of-concept early-stage clinical trials would take years to run, and drug development would be a near impossible task. Surrogate endpoints are needed that reliably predict future vision loss and can be easily measured. Anatomic changes that correlate with disease progression in nonexudative AMD offer the greatest promise as primary endpoints.

      Methods

      In preparation for this review, the electronic PubMed database was searched for relevant research pertaining to anatomic endpoints for the study of nonexudative AMD. Paper selection was based on our knowledge of the field with the goal to be as inclusive as possible. Whenever possible, recent review articles and results from large clinical trials, preferably with outcomes from many years of follow-up were favored over trials of short duration.

      Results

      The most commonly used anatomic endpoint for the study of late, nonexudative AMD is the growth of geographic atrophy (GA). The advantages of studying GA include the appreciation that its enlargement through the foveal center leads to significant vision loss through the availability of natural history studies, the understanding that prevention of this growth would preserve vision in the future, the ability to reliably measure GA using different imaging strategies, and the development appropriate statistical tools that reliably predict the growth of GA over time. The major disadvantage of using GA is that significant, irreversible disease progression has already occurred. The use of drusen volume as a predictor of disease progression and the use of a composite endpoint that incorporates drusen growth, formation of GA, and formation of neovascularization offers an opportunity to study therapies at an earlier stage of AMD with a greater likelihood of preserving better vision over a lifetime.

      Conclusions

      Anatomic endpoints for the study of nonexudative AMD are needed to accelerate drug development, and the availability of optical coherence tomography algorithms capable of reliably measuring drusen morphology offer the best opportunity to study therapies for iAMD.

      Abbreviations and Acronyms:

      AMD (age-related macular degeneration), AREDS (Age-Related Eye Disease Study), BM (Bruch's membrane), CFH (complement factor H), CFP (color fundus photography), CI (circularity index), EpM (Endpoint Management), FAF (fundus autofluorescence), GA (geographic atrophy), iAMD (intermediate age-related macular degeneration), MNV (macular neovascularization), OCT (optical coherence tomography), OFI (OCT fundus image), PS-OCT (polarization-sensitive optical coherence tomography), RPE (retinal pigment epithelium), SD OCT (spectral-domain optical coherence tomography), VEGF (vascular endothelial growth factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Klein R.
        • Klein B.E.
        • Linton K.L.
        Prevalence of age-related maculopathy. The Beaver Dam Eye Study.
        Ophthalmology. 1992; 99: 933-943
        • Pascolini D.
        • Mariotti S.P.
        Global estimates of visual impairment: 2010.
        Br J Ophthalmol. 2012; 96: 614-618
        • Friedman D.S.
        • O’Colmain B.J.
        • Munoz B.
        • et al.
        Prevalence of age-related macular degeneration in the United States.
        Arch Ophthalmol. 2004; 122: 564-572
        • Ferris 3rd, F.L.
        • Wilkinson C.P.
        • Bird A.
        • et al.
        Clinical classification of age-related macular degeneration.
        Ophthalmology. 2013; 120: 844-851
        • Holz F.G.
        • Strauss E.C.
        • Schmitz-Valckenberg S.
        • van Lookeren Campagne M.
        Geographic atrophy: clinical features and potential therapeutic approaches.
        Ophthalmology. 2014; 121: 1079-1091
        • Chakravarthy U.
        • Harding S.P.
        • Rogers C.A.
        • et al.
        Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial.
        Lancet. 2013; 382: 1258-1267
        • Rosenfeld P.J.
        • Shapiro H.
        • Tuomi L.
        • et al.
        Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials.
        Ophthalmology. 2011; 118: 523-530
        • Grunwald J.E.
        • Daniel E.
        • Huang J.
        • et al.
        Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials.
        Ophthalmology. 2014; 121: 150-161
        • Grunwald J.E.
        • Pistilli M.
        • Ying G.S.
        • et al.
        Growth of geographic atrophy in the comparison of age-related macular degeneration treatments trials.
        Ophthalmology. 2015; 122: 809-816
        • Medeiros F.A.
        Biomarkers and surrogate endpoints in glaucoma clinical trials.
        Br J Ophthalmol. 2015; 99: 599-603
        • Yehoshua Z.
        • Rosenfeld P.J.
        • Albini T.A.
        Current clinical trials in dry AMD and the definition of appropriate clinical outcome measures.
        Semin Ophthalmol. 2011; 26: 167-180
        • Csaky K.G.
        • Richman E.A.
        • Ferris 3rd, F.L.
        Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium.
        Invest Ophthalmol Vis Sci. 2008; 49: 479-489
        • Yehoshua Z.
        • Rosenfeld P.J.
        • Gregori G.
        • et al.
        Progression of geographic atrophy in age-related macular degeneration imaged with spectral domain optical coherence tomography.
        Ophthalmology. 2011; 118: 679-686
        • Holz F.G.
        • Bindewald-Wittich A.
        • Fleckenstein M.
        • et al.
        Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration.
        Am J Ophthalmol. 2007; 143: 463-472
        • Sunness J.S.
        • Margalit E.
        • Srikumaran D.
        • et al.
        The long-term natural history of geographic atrophy from age-related macular degeneration: enlargement of atrophy and implications for interventional clinical trials.
        Ophthalmology. 2007; 114: 271-277
        • Fleckenstein M.
        • Schmitz-Valckenberg S.
        • Adrion C.
        • et al.
        Tracking progression with spectral-domain optical coherence tomography in geographic atrophy caused by age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2010; 51: 3846-3852
        • Lindblad A.S.
        • Lloyd P.C.
        • Clemons T.E.
        • et al.
        Change in area of geographic atrophy in the Age-Related Eye Disease Study: AREDS report number 26.
        Arch Ophthalmol. 2009; 127: 1168-1174
        • Schutze C.
        • Ahlers C.
        • Sacu S.
        • et al.
        Performance of OCT segmentation procedures to assess morphology and extension in geographic atrophy.
        Acta Ophthalmol. 2011; 89: 235-240
        • Diniz B.
        • Rodger D.C.
        • Chavali V.R.
        • et al.
        Drusen and RPE atrophy automated quantification by optical coherence tomography in an elderly population.
        Eye (Lond). 2015; 29: 272-279
        • Yehoshua Z.
        • de Amorim Garcia Filho C.A.
        • Nunes R.P.
        • et al.
        Comparison of geographic atrophy growth rates using different imaging modalities in the COMPLETE study.
        Ophthalmic Surg Lasers Imaging Retina. 2015; 46: 413-422
        • Klein R.
        • Davis M.D.
        • Magli Y.L.
        • et al.
        The Wisconsin age-related maculopathy grading system.
        Ophthalmology. 1991; 98: 1128-1134
        • Age-Related Eye Disease Study Research G
        The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the Age-Related Eye Disease Study Report Number 6.
        Am J Ophthalmol. 2001; 132: 668-681
        • Klein M.L.
        • Ferris 3rd, F.L.
        • Armstrong J.
        • et al.
        Retinal precursors and the development of geographic atrophy in age-related macular degeneration.
        Ophthalmology. 2008; 115: 1026-1031
        • Complications of Age-related Macular Degeneration Prevention Trial Research G
        Risk factors for choroidal neovascularization and geographic atrophy in the complications of age-related macular degeneration prevention trial.
        Ophthalmology. 2008; 115 (9 e1–6): 1474-1479
        • Klein R.
        • Klein B.E.
        • Jensen S.C.
        • Meuer S.M.
        The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study.
        Ophthalmology. 1997; 104: 7-21
        • Klaver C.C.
        • Assink J.J.
        • van Leeuwen R.
        • et al.
        Incidence and progression rates of age-related maculopathy: the Rotterdam Study.
        Invest Ophthalmol Vis Sci. 2001; 42: 2237-2241
        • Mitchell P.
        • Wang J.J.
        • Foran S.
        • Smith W.
        Five-year incidence of age-related maculopathy lesions: the Blue Mountains Eye Study.
        Ophthalmology. 2002; 109: 1092-1097
        • Pirbhai A.
        • Sheidow T.
        • Hooper P.
        Prospective evaluation of digital non-stereo color fundus photography as a screening tool in age-related macular degeneration.
        Am J Ophthalmol. 2005; 139: 455-461
        • Sunness J.S.
        • Bressler N.M.
        • Tian Y.
        • et al.
        Measuring geographic atrophy in advanced age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 1999; 40: 1761-1769
        • Schmitz-Valckenberg S.
        • Brinkmann C.K.
        • Alten F.
        • et al.
        Semiautomated image processing method for identification and quantification of geographic atrophy in age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2011; 52: 7640-7646
        • Ach T.
        • Huisingh C.
        • McGwin Jr., G.
        • et al.
        Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium.
        Invest Ophthalmol Vis Sci. 2014; 55: 4832-4841
        • Ablonczy Z.
        • Higbee D.
        • Anderson D.M.
        • et al.
        Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium.
        Invest Ophthalmol Vis Sci. 2013; 54: 5535-5542
        • Schmitz-Valckenberg S.
        • Fleckenstein M.
        • Gobel A.P.
        • et al.
        Optical coherence tomography and autofluorescence findings in areas with geographic atrophy due to age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2011; 52: 1-6
        • Sayegh R.G.
        • Simader C.
        • Scheschy U.
        • et al.
        A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy.
        Ophthalmology. 2011; 118: 1844-1851
        • Simader C.
        • Sayegh R.G.
        • Montuoro A.
        • et al.
        A longitudinal comparison of spectral–domain optical coherence tomography and fundus autofluorescence in geographic atrophy.
        Am J Ophthalmol. 2014; 158: 557-566 e1
        • Moussa K.
        • Lee J.Y.
        • Stinnett S.S.
        • Jaffe G.J.
        Spectral domain optical coherence tomography-determined morphologic predictors of age-related macular degeneration-associated geographic atrophy progression.
        Retina. 2013; 33: 1590-1599
        • Lujan B.J.
        • Rosenfeld P.J.
        • Gregori G.
        • et al.
        Spectral domain optical coherence tomographic imaging of geographic atrophy.
        Ophthalmic Surg Lasers Imaging. 2009; 40: 96-101
        • Bearelly S.
        • Chau F.Y.
        • Koreishi A.
        • et al.
        Spectral domain optical coherence tomography imaging of geographic atrophy margins.
        Ophthalmology. 2009; 116: 1762-1769
        • Scholl H.P.
        • Peto T.
        • Dandekar S.
        • et al.
        Inter- and intra-observer variability in grading lesions of age-related maculopathy and macular degeneration.
        Graefes Arch Clin Exp Ophthalmol. 2003; 241: 39-47
        • Schmitz-Valckenberg S.
        • Fleckenstein M.
        • Gobel A.P.
        • et al.
        Evaluation of autofluorescence imaging with the scanning laser ophthalmoscope and the fundus camera in age-related geographic atrophy.
        Am J Ophthalmol. 2008; 146: 183-192
        • Yehoshua Z.
        • Garcia Filho C.A.
        • Penha F.M.
        • et al.
        Comparison of geographic atrophy measurements from the OCT fundus image and the sub-RPE slab image.
        Ophthalmic Surg Lasers Imaging Retina. 2013; 44: 127-132
        • Chen Q.
        • de Sisternes L.
        • Leng T.
        • et al.
        Semi-automatic geographic atrophy segmentation for SD-OCT images.
        Biomed Opt Express. 2013; 4: 2729-2750
        • Feuer W.J.
        • Yehoshua Z.
        • Gregori G.
        • et al.
        Square root transformation of geographic atrophy area measurements to eliminate dependence of growth rates on baseline lesion measurements: a reanalysis of Age-Related Eye Disease Study report no. 26.
        JAMA Ophthalmol. 2013; 131: 110-111
        • Yehoshua Z.
        • de Amorim Garcia Filho C.A.
        • Nunes R.P.
        • et al.
        Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study.
        Ophthalmology. 2014; 121: 693-701
        • Nunes R.P.
        • Gregori G.
        • Yehoshua Z.
        • et al.
        Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina.
        Ophthalmic Surg Lasers Imaging Retina. 2013; 44: 344-359
        • Stetson P.F.
        • Yehoshua Z.
        • Garcia Filho C.A.
        • et al.
        OCT minimum intensity as a predictor of geographic atrophy enlargement.
        Invest Ophthalmol Vis Sci. 2014; 55: 792-800
        • Bird A.C.
        • Phillips R.L.
        • Hageman G.S.
        Geographic atrophy: a histopathological assessment.
        JAMA Ophthalmol. 2014; 132: 338-345
        • Domalpally A.
        • Danis R.P.
        • White J.
        • et al.
        Circularity index as a risk factor for progression of geographic atrophy.
        Ophthalmology. 2013; 120: 2666-2671
        • Zhang K.
        • Hopkins J.J.
        • Heier J.S.
        • et al.
        Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration.
        Proc Natl Acad Sci U S A. 2011; 108: 6241-6245
        • Wong W.T.
        • Kam W.
        • Cunningham D.
        • et al.
        Treatment of geographic atrophy by the topical administration of OT-551: results of a phase II clinical trial.
        Invest Ophthalmol Vis Sci. 2010; 51: 6131-6139
        • Mata N.L.
        • Lichter J.B.
        • Vogel R.
        • et al.
        Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration.
        Retina. 2013; 33: 498-507
        • Wong W.T.
        • Dresner S.
        • Forooghian F.
        • et al.
        Treatment of geographic atrophy with subconjunctival sirolimus: results of a phase I/II clinical trial.
        Invest Ophthalmol Vis Sci. 2013; 54: 2941-2950
        • Yehoshua Z.
        • Wang F.
        • Rosenfeld P.J.
        • et al.
        Natural history of drusen morphology in age-related macular degeneration using spectral domain optical coherence tomography.
        Ophthalmology. 2011; 118: 2434-2441
        • Davis M.D.
        • Gangnon R.E.
        • Lee L.Y.
        • et al.
        The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17.
        Arch Ophthalmol. 2005; 123: 1484-1498
        • Wang J.J.
        • Foran S.
        • Smith W.
        • Mitchell P.
        Risk of age-related macular degeneration in eyes with macular drusen or hyperpigmentation: the Blue Mountains Eye Study cohort.
        Arch Ophthalmol. 2003; 121: 658-663
        • Klein R.
        • Klein B.E.
        • Tomany S.C.
        • et al.
        Ten-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study.
        Ophthalmology. 2002; 109: 1767-1779
        • Klein R.
        • Klein B.E.
        • Knudtson M.D.
        • et al.
        Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study.
        Ophthalmology. 2007; 114: 253-262
        • Wang J.J.
        • Rochtchina E.
        • Lee A.J.
        • et al.
        Ten-year incidence and progression of age-related maculopathy: the Blue Mountains Eye Study.
        Ophthalmology. 2007; 114: 92-98
        • Ferris F.L.
        • Davis M.D.
        • Clemons T.E.
        • et al.
        A simplified severity scale for age-related macular degeneration: AREDS Report No. 18.
        Arch Ophthalmol. 2005; 123: 1570-1574
        • Seddon J.M.
        • Sharma S.
        • Adelman R.A.
        Evaluation of the clinical age-related maculopathy staging system.
        Ophthalmology. 2006; 113: 260-266
        • Bird A.C.
        • Bressler N.M.
        • Bressler S.B.
        • et al.
        An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group.
        Surv Ophthalmol. 1995; 39: 367-374
        • Bressler N.M.
        • Munoz B.
        • Maguire M.G.
        • et al.
        Five-year incidence and disappearance of drusen and retinal pigment epithelial abnormalities. Waterman study.
        Arch Ophthalmol. 1995; 113: 301-308
        • Sparrow J.M.
        • Dickinson A.J.
        • Duke A.M.
        • et al.
        Seven year follow-up of age-related maculopathy in an elderly British population.
        Eye (Lond). 1997; 11: 315-324
        • Bartlett H.
        • Eperjesi F.
        Use of fundus imaging in quantification of age-related macular change.
        Surv Ophthalmol. 2007; 52: 655-671
        • Smith R.T.
        • Chan J.K.
        • Nagasaki T.
        • et al.
        A method of drusen measurement based on reconstruction of fundus background reflectance.
        Br J Ophthalmol. 2005; 89: 87-91
        • Friberg T.R.
        • Huang L.
        • Palaiou M.
        • Bremer R.
        Computerized detection and measurement of drusen in age-related macular degeneration.
        Ophthalmic Surg Lasers Imaging. 2007; 38: 126-134
        • Peli E.
        • Lahav M.
        Drusen measurement from fundus photographs using computer image analysis.
        Ophthalmology. 1986; 93: 1575-1580
        • Morgan W.H.
        • Cooper R.L.
        • Constable I.J.
        • Eikelboom R.H.
        Automated extraction and quantification of macular drusen from fundal photographs.
        Aust N Z J Ophthalmol. 1994; 22: 7-12
        • Zweifel S.A.
        • Spaide R.F.
        • Curcio C.A.
        • et al.
        Reticular pseudodrusen are subretinal drusenoid deposits.
        Ophthalmology. 2010; 117 (e1): 303-312
        • Spaide R.F.
        Colocalization of pseudodrusen and subretinal drusenoid deposits using high-density en face spectral domain optical coherence tomography.
        Retina. 2014; 34: 2336-2345
        • Curcio C.A.
        • Messinger J.D.
        • Sloan K.R.
        • et al.
        Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model.
        Retina. 2013; 33: 265-276
        • Schaal K.B.
        • Legarreta A.D.
        • Gregori G.
        • et al.
        Widefield en face optical coherence tomography imaging of subretinal drusenoid deposits.
        Ophthalmic Surg Lasers Imaging Retina. 2015; 46: 550-559
        • Sarks S.H.
        • Arnold J.J.
        • Killingsworth M.C.
        • Sarks J.P.
        Early drusen formation in the normal and aging eye and their relation to age related maculopathy: a clinicopathological study.
        Br J Ophthalmol. 1999; 83: 358-368
        • Gregori G.
        • Wang F.
        • Rosenfeld P.J.
        • et al.
        Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration.
        Ophthalmology. 2011; 118: 1373-1379
        • Ouyang Y.
        • Heussen F.M.
        • Hariri A.
        • et al.
        Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration.
        Ophthalmology. 2013; 120: 2656-2665
        • Wu Z.
        • Luu C.D.
        • Ayton L.N.
        • et al.
        Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration.
        Ophthalmology. 2014; 121: 2415-2422
        • Chen Q.
        • Leng T.
        • Zheng L.L.
        • et al.
        An improved optical coherence tomography-derived fundus projection image for drusen visualization.
        Retina. 2014; 34: 996-1005
        • Folgar F.A.
        • Yuan E.L.
        • Sevilla M.
        • et al.
        Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration.
        Ophthalmology. 2016; 123: 39-50.e1
        • Schlanitz F.G.
        • Sacu S.
        • Baumann B.
        • et al.
        Identification of drusen characteristics in age-related macular degeneration by polarization-sensitive optical coherence tomography.
        Am J Ophthalmol. 2015; 160: 335-344.e1
        • Gregori G.
        • Yehoshua Z.
        • Garcia Filho C.A.
        • et al.
        Change in drusen area over time compared using spectral-domain optical coherence tomography and color fundus imaging.
        Invest Ophthalmol Vis Sci. 2014; 55: 7662-7668
        • Yehoshua Z.
        • Gregori G.
        • Sadda S.R.
        • et al.
        Comparison of drusen area detected by spectral domain optical coherence tomography and color fundus imaging.
        Invest Ophthalmol Vis Sci. 2013; 54: 2429-2434
        • Diniz B.
        • Ribeiro R.
        • Heussen F.M.
        • et al.
        Drusen measurements comparison by fundus photograph manual delineation versus optical coherence tomography retinal pigment epithelial segmentation automated analysis.
        Retina. 2014; 34: 55-62
        • de Sisternes L.
        • Simon N.
        • Tibshirani R.
        • et al.
        Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression.
        Invest Ophthalmol Vis Sci. 2014; 55: 7093-7103
        • Nathoo N.A.
        • Or C.
        • Young M.
        • et al.
        Optical coherence tomography-based measurement of drusen load predicts development of advanced age-related macular degeneration.
        Am J Ophthalmol. 2014; 158 (e1): 757-761
        • Jain N.
        • Farsiu S.
        • Khanifar A.A.
        • et al.
        Quantitative comparison of drusen segmented on SD-OCT versus drusen delineated on color fundus photographs.
        Invest Ophthalmol Vis Sci. 2010; 51: 4875-4883
        • Schlanitz F.G.
        • Ahlers C.
        • Sacu S.
        • et al.
        Performance of drusen detection by spectral-domain optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2010; 51: 6715-6721
        • Baumann B.
        • Gotzinger E.
        • Pircher M.
        • et al.
        Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography.
        J Biomed Opt. 2010; 15: 061704
        • Gotzinger E.
        • Pircher M.
        • Geitzenauer W.
        • et al.
        Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography.
        Opt Express. 2008; 16: 16410-16422
        • Schlanitz F.G.
        • Baumann B.
        • Spalek T.
        • et al.
        Performance of automated drusen detection by polarization-sensitive optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2011; 52: 4571-4579
        • Khanifar A.A.
        • Koreishi A.F.
        • Izatt J.A.
        • Toth C.A.
        Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration.
        Ophthalmology. 2008; 115: 1883-1890
        • Stopa M.
        • Bower B.A.
        • Davies E.
        • et al.
        Correlation of pathologic features in spectral domain optical coherence tomography with conventional retinal studies.
        Retina. 2008; 28: 298-308
        • Chew E.Y.
        • Clemons T.E.
        • Agron E.
        • et al.
        Ten-year follow-up of age-related macular degeneration in the Age-Related Eye Disease Study: AREDS report no. 36.
        JAMA Ophthalmol. 2014; 132: 272-277
        • Cukras C.
        • Agron E.
        • Klein M.L.
        • et al.
        Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration: Age-Related Eye Disease Study Report No. 28.
        Ophthalmology. 2010; 117: 489-499
        • Parodi M.B.
        • Virgili G.
        • Evans J.R.
        Laser treatment of drusen to prevent progression to advanced age-related macular degeneration.
        Cochrane Database Syst Rev. 2009; : CD006537
        • Abdelsalam A.
        • Del Priore L.
        • Zarbin M.A.
        Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression.
        Surv Ophthalmol. 1999; 44: 1-29
        • Margolis R.
        • Ober M.D.
        • Freund K.B.
        Disappearance of drusen after rhegmatogenous retinal detachment.
        Retin Cases Brief Rep. 2010; 4: 254-256
        • Dithmar S.
        • Pollithy S.
        • Ach T.
        Disappearance of central confluent soft drusen following vitrectomy and ILM peeling.
        Eye (Lond). 2013; 27: 779-781
        • Fuseya M.
        • Imamura Y.
        • Ishida S.
        • et al.
        Regression of macular drusen after pars plana vitrectomy in a patient with age-related macular degeneration.
        Retin Cases Brief Rep. 2007; 1: 160-162
        • Krishnan R.
        • Lochhead J.
        Regression of soft drusen and drusenoid pigment epithelial detachment following intravitreal anti-vascular endothelial growth factor therapy.
        Can J Ophthalmol. 2010; 45: 83-84
        • Jobling A.I.
        • Guymer R.H.
        • Vessey K.A.
        • et al.
        Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage.
        FASEB J. 2015; 29: 696-710
        • Guymer R.H.
        • Brassington K.H.
        • Dimitrov P.
        • et al.
        Nanosecond-laser application in intermediate AMD: 12-month results of fundus appearance and macular function.
        Clin Experiment Ophthalmol. 2014; 42: 466-479
        • Lavinsky D.
        • Palanker D.
        Nondamaging photothermal therapy for the retina: initial clinical experience with chronic central serous retinopathy.
        Retina. 2015; 35: 213-222
        • Lavinsky D.
        • Sramek C.
        • Wang J.
        • et al.
        Subvisible retinal laser therapy: titration algorithm and tissue response.
        Retina. 2014; 34: 87-97
        • de Amorim Garcia Filho C.A.
        • Yehoshua Z.
        • Gregori G.
        • et al.
        Change in drusen volume as a novel clinical trial endpoint for the study of complement inhibition in age-related macular degeneration.
        Ophthalmic Surg Lasers Imaging Retina. 2014; 45: 18-31
        • Garcia Filho C.A.
        • Yehoshua Z.
        • Gregori G.
        • et al.
        Change in drusen volume as a novel clinical trial endpoint for the study of complement inhibition in age-related macular degeneration.
        Ophthalmic Surg Lasers Imaging Retina. 2014; 45: 18-31
        • Chavali V.R.
        • Diniz B.
        • Huang J.
        • et al.
        Association of OCT derived drusen measurements with AMD associated-genotypic SNPs in Amish population.
        J Clin Med. 2015; 4: 304-317
        • Busse J.W.
        • Bhandari M.
        • Ferreira-Gonzalez I.
        • et al.
        Use and interpretation of composite end points in orthopaedic trials.
        J Bone Joint Surg Am. 2012; 94: 65-69
        • Tomlinson G.
        • Detsky A.S.
        Composite end points in randomized trials: there is no free lunch.
        JAMA. 2010; 303: 267-268