Advertisement

Macular versus Retinal Nerve Fiber Layer Parameters for Diagnosing Manifest Glaucoma

A Systematic Review of Diagnostic Accuracy Studies
Published:February 15, 2016DOI:https://doi.org/10.1016/j.ophtha.2015.12.041

      Topic

      Macular parameters have been proposed as an alternative to retinal nerve fiber layer (RNFL) parameters to diagnose glaucoma. Comparing the diagnostic accuracy of macular parameters, specifically the ganglion cell complex (GCC) and ganglion cell inner plexiform layer (GCIPL), with the accuracy of RNFL parameters for detecting manifest glaucoma is important to guide clinical practice and future research.

      Methods

      Studies using spectral domain optical coherence tomography (SD OCT) and reporting macular parameters were included if they allowed the extraction of accuracy data for diagnosing manifest glaucoma, as confirmed with automated perimetry or a clinician's optic nerve head (ONH) assessment. Cross-sectional cohort studies and case-control studies were included. The QUADAS 2 tool was used to assess methodological quality. Only direct comparisons of macular versus RNFL parameters (i.e., in the same study) were conducted. Summary sensitivity and specificity of each macular or RNFL parameter were reported, and the relative diagnostic odds ratio (DOR) was calculated in hierarchical summary receiver operating characteristic (HSROC) models to compare them.

      Results

      Thirty-four studies investigated macular parameters using RTVue OCT (Optovue Inc., Fremont, CA) (19 studies, 3094 subjects), Cirrus OCT (Carl Zeiss Meditec Inc., Dublin, CA) (14 studies, 2164 subjects), or 3D Topcon OCT (Topcon, Inc., Tokyo, Japan) (4 studies, 522 subjects). Thirty-two of these studies allowed comparisons between macular and RNFL parameters. Studies generally reported sensitivities at fixed specificities, more commonly 0.90 or 0.95, with sensitivities of most best-performing parameters between 0.65 and 0.75. For all OCT devices, compared with RNFL parameters, macular parameters were similarly or slightly less accurate for detecting glaucoma at the highest reported specificity, which was confirmed in analyses at the lowest specificity. Included studies suffered from limitations, especially the case-control study design, which is known to overestimate accuracy. However, this flaw is less relevant as a source of bias in direct comparisons conducted within studies.

      Conclusions

      With the use of OCT, RNFL parameters are still preferable to macular parameters for diagnosing manifest glaucoma, but the differences are small. Because of high heterogeneity, direct comparative or randomized studies of OCT devices or OCT parameters and diagnostic strategies are essential.

      Abbreviations and Acronyms:

      DOR (diagnostic odds ratio), GCC (ganglion cell complex), GCIPL (ganglion cell inner plexiform layer), HSROC (hierarchical summary receiver operating characteristic), OCT (optical coherence tomography), ONH (optic nerve head), RGC (retinal ganglion cell), RNFL (retinal nerve fiber layer), SD OCT (spectral domain optical coherence tomography)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Quigley H.A.
        Glaucoma. Lancet. 2011; 377: 1367-1377
        • Greenfield D.S.
        • Weinreb R.N.
        Role of optic nerve imaging in glaucoma clinical practice and clinical trials.
        Am J Ophthalmol. 2008; 145: 598-603
        • Sharma P.
        • Sample P.A.
        • Zangwill L.M.
        • Schuman J.S.
        Diagnostic tools for glaucoma detection and management.
        Surv Ophthalmol. 2008; 53 Suppl 1: S17-S32
        • Huang D.
        • Swanson E.A.
        • Lin C.P.
        • et al.
        Optical coherence tomography.
        Science. 1991; 254: 1178-1181
        • Schuman J.S.
        • Pedut-Kloizman T.
        • Hertzmark E.
        • et al.
        Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography.
        Ophthalmology. 1996; 103: 1889-1898
        • Budenz D.L.
        • Chang R.T.
        • Huang X.
        • et al.
        Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes.
        Invest Ophthalmol Vis Sci. 2005; 46: 2440-2443
        • Bussel I.I.
        • Wollstein G.
        • Schuman J.S.
        OCT for glaucoma diagnosis, screening and detection of glaucoma progression.
        Br J Ophthalmol. 2014; 98 Suppl 2: ii15-ii19
        • Sung K.R.
        • Kim J.S.
        • Wollstein G.
        • et al.
        Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis.
        Br J Ophthalmol. 2011; 95: 909-914
        • Leung C.K.
        • Cheung C.Y.
        • Weinreb R.N.
        • et al.
        Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis.
        Invest Ophthalmol Vis Sci. 2010; 51: 217-222
        • Reus N.J.
        • Lemij H.G.
        • Garway-Heath D.F.
        • et al.
        Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial.
        Ophthalmology. 2010; 117: 717-723
        • Oddone F.
        • Centofanti M.
        • Tanga L.
        • et al.
        Influence of disc size on optic nerve head versus retinal nerve fiber layer assessment for diagnosing glaucoma.
        Ophthalmology. 2011; 118: 1340-1347
        • Zeimer R.
        • Asrani S.
        • Zou S.
        • et al.
        Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study.
        Ophthalmology. 1998; 105: 224-231
        • Curcio C.A.
        • Allen K.A.
        Topography of ganglion cells in human retina.
        J Comp Neurol. 1990; 300: 5-25
        • Wassle H.
        • Grunert U.
        • Rohrenbeck J.
        • Boycott B.B.
        Cortical magnification factor and the ganglion cell density of the primate retina.
        Nature. 1989; 341: 643-646
        • Asrani S.
        • Zou S.
        • d’Anna S.
        • et al.
        Noninvasive mapping of the normal retinal thickness at the posterior pole.
        Ophthalmology. 1999; 106: 269-273
        • Tan O.
        • Li G.
        • Lu A.T.
        • et al.
        Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis.
        Ophthalmology. 2008; 115: 949-956
        • Shahidi M.
        • Zeimer R.C.
        • Mori M.
        Topography of the retinal thickness in normal subjects.
        Ophthalmology. 1990; 97: 1120-1124
        • Wollstein G.
        • Schuman J.S.
        • Price L.L.
        • et al.
        Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields.
        Am J Ophthalmol. 2004; 138: 218-225
        • Giovannini A.
        • Amato G.
        • Mariotti C.
        The macular thickness and volume in glaucoma: an analysis in normal and glaucomatous eyes using OCT.
        Acta Ophthalmol Scand Suppl. 2002; 236: 34-36
        • Leung C.K.
        • Chan W.M.
        • Yung W.H.
        • et al.
        Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study.
        Ophthalmology. 2005; 112: 391-400
        • Medeiros F.A.
        • Zangwill L.M.
        • Bowd C.
        • et al.
        Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography.
        Am J Ophthalmol. 2005; 139: 44-55
        • Kendell K.R.
        • Quigley H.A.
        • Kerrigan L.A.
        • et al.
        Primary open-angle glaucoma is not associated with photoreceptor loss.
        Invest Ophthalmol Vis Sci. 1995; 36: 200-205
        • Wojtkowski M.
        • Srinivasan V.
        • Fujimoto J.G.
        • et al.
        Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
        Ophthalmology. 2005; 112: 1734-1746
        • Chen T.C.
        • Cense B.
        • Pierce M.C.
        • et al.
        Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging.
        Arch Ophthalmol. 2005; 123: 1715-1720
        • Wang M.
        • Hood D.C.
        • Cho J.S.
        • et al.
        Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography.
        Arch Ophthalmol. 2009; 127: 875-881
        • Tan O.
        • Chopra V.
        • Lu A.T.
        • et al.
        Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography.
        Ophthalmology. 2009; 116: 2305-2314.e1–2
        • Mori S.
        • Hangai M.
        • Sakamoto A.
        • Yoshimura N.
        Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma.
        J Glaucoma. 2010; 19: 528-534
        • Michelessi M.
        • Lucenteforte E.
        • Oddone F.
        • et al.
        Optic nerve head and fibre layer imaging for diagnosing glaucoma.
        Cochrane Database Syst Rev. 2015; 11: CD008803
        • Reitsma J.B.
        • Glas A.S.
        • Rutjes A.W.
        • et al.
        Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.
        J Clin Epidemiol. 2005; 58: 982-990
        • Rutter C.M.
        • Gatsonis C.A.
        Regression methods for meta-analysis of diagnostic test data.
        Acad Radiol. 1995; 2 Suppl 1 (discussion S65–7, S70–1 pas): S48-S56
        • Rutter C.M.
        • Gatsonis C.A.
        A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations.
        Stat Med. 2001; 20: 2865-2884
        • Takwoingi Y.
        • Leeflang M.M.
        • Deeks J.J.
        Empirical evidence of the importance of comparative studies of diagnostic test accuracy.
        Ann Intern Med. 2013; 158: 544-554
        • Akashi A.
        • Kanamori A.
        • Nakamura M.
        • et al.
        Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma.
        Invest Ophthalmol Vis Sci. 2013; 54: 4478-4484
        • Kim N.R.
        • Hong S.
        • Kim J.H.
        • et al.
        Comparison of macular ganglion cell complex thickness by Fourier-domain OCT in normal tension glaucoma and primary open-angle glaucoma.
        J Glaucoma. 2013; 22: 133-139
        • Arintawati P.
        • Sone T.
        • Akita T.
        • et al.
        The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes.
        J Glaucoma. 2013; 22: 713-718
        • Begum V.U.
        • Addepalli U.K.
        • Yadav R.K.
        • et al.
        Ganglion cell-inner plexiform layer thickness of high definition optical coherence tomography in perimetric and preperimetric glaucoma.
        Invest Ophthalmol Vis Sci. 2014; 55: 4768-4775
        • Begum V.U.
        • Jonnadula G.B.
        • Yadav R.K.
        • et al.
        Scanning the macula for detecting glaucoma.
        Indian J Ophthalmol. 2014; 62: 82-87
        • Bertuzzi F.
        • Benatti E.
        • Esempio G.
        • et al.
        Evaluation of retinal nerve fiber layer thickness measurements for glaucoma detection: GDx ECC versus spectral-domain OCT.
        J Glaucoma. 2014; 23: 232-239
        • Choi Y.J.
        • Jeoung J.W.
        • Park K.H.
        • Kim D.M.
        Glaucoma detection ability of ganglion cell-inner plexiform layer thickness by spectral-domain optical coherence tomography in high myopia.
        Invest Ophthalmol Vis Sci. 2013; 54: 2296-2304
        • Fang Y.
        • Pan Y.Z.
        • Li M.
        • et al.
        Diagnostic capability of Fourier-Domain optical coherence tomography in early primary open angle glaucoma.
        Chin Med J (Engl). 2010; 123: 2045-2050
        • Garas A.
        • Vargha P.
        • Hollo G.
        Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma.
        Eye (Lond). 2011; 25: 57-65
        • Huang J.Y.
        • Pekmezci M.
        • Mesiwala N.
        • et al.
        Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with Fourier-domain optical coherence tomography.
        J Glaucoma. 2011; 20: 87-94
        • Jeoung J.W.
        • Choi Y.J.
        • Park K.H.
        • Kim D.M.
        Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2013; 54: 4422-4429
        • Kim N.R.
        • Lee E.S.
        • Seong G.J.
        • et al.
        Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia.
        Br J Ophthalmol. 2011; 95: 1115-1121
        • Kim K.E.
        • Ahn S.J.
        • Kim D.M.
        Comparison of two different spectral domain optical coherence tomography devices in the detection of localized retinal nerve fiber layer defects.
        Jpn J Ophthalmol. 2013; 57: 347-358
        • Kim M.J.
        • Jeoung J.W.
        • Park K.H.
        • et al.
        Topographic profiles of retinal nerve fiber layer defects affect the diagnostic performance of macular scans in preperimetric glaucoma.
        Invest Ophthalmol Vis Sci. 2014; 55: 2079-2087
        • Kim Y.J.
        • Kang M.H.
        • Cho H.Y.
        • et al.
        Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma.
        Jpn J Ophthalmol. 2014; 58: 244-251
        • Kita Y.
        • Kita R.
        • Takeyama A.
        • et al.
        Ability of optical coherence tomography-determined ganglion cell complex thickness to total retinal thickness ratio to diagnose glaucoma.
        J Glaucoma. 2013; 22: 757-762
        • Kotowski J.
        • Folio L.S.
        • Wollstein G.
        • et al.
        Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans.
        Br J Ophthalmol. 2012; 96: 1420-1425
        • Lisboa R.
        • Paranhos Jr., A.
        • Weinreb R.N.
        • et al.
        Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma.
        Invest Ophthalmol Vis Sci. 2013; 54: 3417-3425
        • Moreno P.A.
        • Konno B.
        • Lima V.C.
        • et al.
        Spectral-domain optical coherence tomography for early glaucoma assessment: analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer.
        Can J Ophthalmol. 2011; 46: 543-547
        • Mwanza J.C.
        • Durbin M.K.
        • Budenz D.L.
        • et al.
        Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head.
        Ophthalmology. 2012; 119: 1151-1158
        • Mwanza J.C.
        • Warren J.L.
        • Budenz D.L.
        Ganglion Cell Analysis Study Group. Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss.
        Invest Ophthalmol Vis Sci. 2013; 54: 8393-8400
        • Mwanza J.C.
        • Budenz D.L.
        • Godfrey D.G.
        • et al.
        Diagnostic performance of optical coherence tomography ganglion cell–inner plexiform layer thickness measurements in early glaucoma.
        Ophthalmology. 2014; 121: 849-854
        • Na J.H.
        • Lee K.
        • Lee J.R.
        • et al.
        Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fibre defects by spectral-domain optical coherence tomography.
        Clin Experiment Ophthalmol. 2013; 41: 870-880
        • Nakatani Y.
        • Higashide T.
        • Ohkubo S.
        • et al.
        Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography.
        J Glaucoma. 2011; 20: 252-259
        • Nouri-Mahdavi K.
        • Nowroozizadeh S.
        • Nassiri N.
        • et al.
        Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements.
        Am J Ophthalmol. 2013; 156: 1297-1307.e2
        • Rao H.L.
        • Zangwill L.M.
        • Weinreb R.N.
        • et al.
        Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis.
        Ophthalmology. 2010; 117: 1692-1699.e1
        • Rao H.L.
        • Kumbar T.
        • Addepalli U.K.
        • et al.
        Effect of spectrum bias on the diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma.
        Invest Ophthalmol Vis Sci. 2012; 53: 1058-1065
        • Rao H.L.
        • Babu J.G.
        • Addepalli U.K.
        • et al.
        Retinal nerve fiber layer and macular inner retina measurements by spectral domain optical coherence tomograph in Indian eyes with early glaucoma.
        Eye (Lond). 2012; 26: 133-139
        • Rao H.L.
        • Addepalli U.K.
        • Chaudhary S.
        • et al.
        Ability of different scanning protocols of spectral domain optical coherence tomography to diagnose preperimetric glaucoma.
        Invest Ophthalmol Vis Sci. 2013; 54: 7252-7257
        • Rolle T.
        • Briamonte C.
        • Curto D.
        • Grignolo F.M.
        Ganglion cell complex and retinal nerve fiber layer measured by Fourier-domain optical coherence tomography for early detection of structural damage in patients with preperimetric glaucoma.
        Clin Ophthalmol. 2011; 5: 961-969
        • Seong M.
        • Sung K.R.
        • Choi E.H.
        • et al.
        Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma.
        Invest Ophthalmol Vis Sci. 2010; 51: 1446-1452
        • Shin J.W.
        • Uhm K.B.
        • Lee W.J.
        • Kim Y.J.
        Diagnostic ability of retinal nerve fiber layer maps to detect localized retinal nerve fiber layer defects.
        Eye (Lond). 2013; 27: 1022-1031
        • Sung M.S.
        • Yoon J.H.
        • Park S.W.
        Diagnostic validity of macular ganglion cell-inner plexiform layer thickness deviation map algorithm using cirrus HD-OCT in preperimetric and early glaucoma.
        J Glaucoma. 2014; 23: e144-e151
        • Zhang C.
        • Tatham A.J.
        • Weinreb R.N.
        • et al.
        Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula.
        Ophthalmology. 2014; 121: 2371-2379
        • Sung K.R.
        • Wollstein G.
        • Kim N.R.
        • et al.
        Macular assessment using optical coherence tomography for glaucoma diagnosis.
        Br J Ophthalmol. 2012; 96: 1452-1455
        • Grewal D.S.
        • Tanna A.P.
        Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography.
        Curr Opin Ophthalmol. 2013; 24: 150-161
        • Wong J.J.
        • Chen T.C.
        • Shen L.Q.
        • Pasquale L.R.
        Macular imaging for glaucoma using spectral-domain optical coherence tomography: a review.
        Semin Ophthalmol. 2012; 27: 160-166
        • Reitsma J.B.
        • Rutjes A.W.
        • Whiting P.
        • et al.
        Chapter 9: Assessing methodological quality.
        in: Deeks J.J. Bossuyt P.M. Gatsonis C.A. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 100: The Cochrane Collaboration. 2009 (Available at:) (Accessed January 26, 2016)
        • Johnson Z.K.
        • Siddiqui M.A.
        • Azuara-Blanco A.
        The quality of reporting of diagnostic accuracy studies of optical coherence tomography in glaucoma.
        Ophthalmology. 2007; 114: 1607-1612
        • Shoji T.
        • Sato H.
        • Ishida M.
        • et al.
        Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2011; 52: 1098-1102
        • Asrani S.
        • Rosdahl J.A.
        • Allingham R.R.
        Novel software strategy for glaucoma diagnosis: asymmetry analysis of retinal thickness.
        Arch Ophthalmol. 2011; 129: 1205-1211
        • Seo J.H.
        • Kim T.W.
        • Weinreb R.N.
        • et al.
        Detection of localized retinal nerve fiber layer defects with posterior pole asymmetry analysis of spectral domain optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2012; 53: 4347-4353
        • Rolle T.
        • Manerba L.
        • Lanzafame P.
        • Grignolo F.M.
        Diagnostic power of macular retinal thickness analysis and structure-function relationship in glaucoma diagnosis using Spectralis OCT.
        Curr Eye Res. 2015 July 22; ([Epub ahead of print]): 1-9