Advertisement

Prevalence of Subretinal Drusenoid Deposits in Older Persons with and without Age-Related Macular Degeneration, by Multimodal Imaging

Published:February 10, 2016DOI:https://doi.org/10.1016/j.ophtha.2015.12.034

      Purpose

      To assess the prevalence of subretinal drusenoid deposits (SDD) in older adults with healthy maculas and early and intermediate age-related macular degeneration (AMD) using multimodal imaging.

      Design

      Cross-sectional study.

      Participants

      A total of 651 subjects aged ≥60 years enrolled in the Alabama Study of Early Age-Related Macular Degeneration from primary care ophthalmology clinics.

      Methods

      Subjects were imaged using spectral domain optical coherence tomography (SD OCT) of the macula and optic nerve head (ONH), infrared reflectance, fundus autofluorescence, and color fundus photographs (CFP). Eyes were assessed for AMD presence and severity using the Age-Related Eye Disease Study (AREDS) 9-step scale. Criteria for SDD presence were identification on ≥1 en face modality plus SD OCT or on ≥2 en face modalities if absent on SD OCT. Subretinal drusenoid deposits were considered present at the person level if present in 1 or both eyes.

      Main Outcome Measures

      Prevalence of SDD in participants with and without AMD.

      Results

      Overall prevalence of SDD was 32% (197/611), with 62% (122/197) affected in both eyes. Persons with SDD were older than those without SDD (70.6 vs. 68.7 years, P = 0.0002). Prevalence of SDD was 23% in subjects without AMD and 52% in subjects with AMD (P < 0.0001). Among those with early and intermediate AMD, SDD prevalence was 49% and 79%, respectively. After age adjustment, those with SDD were 3.4 times more likely to have AMD than those without SDD (95% confidence interval, 2.3–4.9). By using CFP only for SDD detection per the AREDS protocol, prevalence of SDD was 2% (12/610). Of persons with SDD detected by SD OCT and confirmed by at least 1 en face modality, 47% (89/190) were detected exclusively on the ONH SD OCT volume.

      Conclusions

      Subretinal drusenoid deposits are present in approximately one quarter of older adults with healthy maculae and in more than half of persons with early to intermediate AMD, even by stringent criteria. The prevalence of SDD is strongly associated with AMD presence and severity and increases with age, and its retinal topography including peripapillary involvement resembles that of rod photoreceptors. Consensus on SDD detection methods is recommended to advance our knowledge of this lesion and its clinical and biologic significance.

      Abbreviations and Acronyms:

      ALSTAR (Alabama Study of Early Age-Related Macular Degeneration), AMD (age-related macular degeneration), APO A-I (apolipoprotein A-I), APO B (apolipoprotein B), AREDS (Age-Related Eye Disease Study), BDES (Beaver Dam Eye Study), BMES (Blue Mountains Eye Study), BR (blue reflectance (488 nm excitation)), CFP (color fundus photograph), CI (confidence interval), CNV (choroidal neovascular membrane), CRP (C-reactive protein), cSLO (confocal scanning laser ophthalmoscope), C3-5 (complement proteins C3, C4, C5), C3a-5a (complement protein fragments C3a, C4a, C5a), EL (eye-level), FA (fluorescein angiography), FAF (fundus autofluorescence), FAF-NIR (fundus autofluorescence, near infrared (830 nm excitation)), FAF-SW (fundus autofluorescence, short wavelength (488 nm excitation)), GA (geographic atrophy), IR (infrared reflectance), OCT (optical coherence tomography), OR (odds ratio), ICG (indocyanine green angiography), ND (not discernable), NIA (near-infrared autofluorescence (787 nm excitation)), NIR-R (near infrared reflectance (820 nm excitation)), NIR-FAF (near infrared reflectance, fundus autofluorescence (790 nm excitation)), ONH (optic nerve head), PAD (present and discernable), PL (person-level), Q (questionable), RPD (reticular pseudodrusen), Ref (reference), RF (red-free light), RPE (retinal pigment epithelium), SDD (subretinal drusenoid deposits), SD OCT (spectral domain optical coherence tomography), U (Ungradable)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Curcio C.A.
        • Messinger J.D.
        • Sloan K.R.
        • et al.
        Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model.
        Retina. 2013; 33: 265-276
        • Schmitz-Valckenberg S.
        • Alten F.
        • Steinberg J.S.
        • et al.
        Reticular drusen associated with geographic atrophy in age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2011; 52: 5009-5015
        • Rudolf M.
        • Malek G.
        • Messinger J.D.
        • et al.
        Sub-retinal drusenoid deposits in human retina: organization and composition.
        Exp Eye Res. 2008; 87: 402-408
        • Oak A.S.
        • Messinger J.D.
        • Curcio C.A.
        Subretinal drusenoid deposits: further characterization by lipid histochemistry.
        Retina. 2014; 34: 825-826
        • Curcio C.A.
        • Johnson M.
        • Rudolf M.
        • Huang J.D.
        The oil spill in ageing Bruch membrane.
        Br J Ophthalmol. 2011; 95: 1638-1645
        • Arnold J.J.
        • Sarks J.P.
        • Killingsworth M.C.
        • et al.
        Adult vitelliform macular degeneration: a clinicopathological study.
        Eye (Lond). 2003; 17: 717-726
        • Zhang Y.
        • Wang X.
        • Rivero E.B.
        • et al.
        Photoreceptor perturbation around subretinal drusenoid deposits as revealed by adaptive optics scanning laser ophthalmoscopy.
        Am J Ophthalmol. 2014; 158: 584-596 e1
        • Steinberg J.S.
        • Fitzke F.W.
        • Fimmers R.
        • et al.
        Scotopic and photopic microperimetry in patients with reticular drusen and age-related macular degeneration.
        JAMA Ophthalmol. 2015; 133: 690-697
        • Flamendorf J.
        • Agron E.
        • Wong W.T.
        • et al.
        Impairments in dark adaptation are associated with age-related macular degeneration severity and reticular pseudodrusen.
        Ophthalmology. 2015; 122: 2053-2062
        • Neely D.
        • Zarubina A.V.
        • Clark M.E.
        • et al.
        Association between subretinal drusenoid deposits seen by multimodal imaging and dark adaptation in normal, early, and intermediate age-related macular degeneration eyes.
        Abstract. Invest Ophthalmol Vis Sci. 2015; 56: 2777
        • Mimoun G.
        • Soubrane G.
        • Coscas G.
        Macular drusen.
        J Fr Ophtalmol. 1990; 13: 511-530
        • Arnold J.J.
        • Sarks S.H.
        • Killingsworth M.C.
        • Sarks J.P.
        Reticular pseudodrusen. A risk factor in age-related maculopathy.
        Retina. 1995; 15: 183-191
        • Curcio C.A.
        • Presley J.B.
        • Malek G.
        • et al.
        Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy.
        Exp Eye Res. 2005; 81: 731-741
        • Zweifel S.A.
        • Imamura Y.
        • Spaide T.C.
        • et al.
        Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration.
        Ophthalmology. 2010; 117: 1775-1781
        • Zweifel S.A.
        • Spaide R.F.
        • Curcio C.A.
        • et al.
        Reticular pseudodrusen are subretinal drusenoid deposits.
        Ophthalmology. 2010; 117: 303-312 e1
        • Prenner J.L.
        • Rosenblatt B.J.
        • Tolentino M.J.
        • et al.
        Risk factors for choroidal neovascularization and vision loss in the fellow eye study of CNVPT.
        Retina. 2003; 23: 307-314
        • Einbock W.
        • Moessner A.
        • Schnurrbusch U.E.
        • et al.
        Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study.
        Graefes Arch Clin Exp Ophthalmol. 2005; 243: 300-305
        • Smith R.T.
        • Chan J.K.
        • Busuoic M.
        • et al.
        Autofluorescence characteristics of early, atrophic, and high-risk fellow eyes in age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2006; 47: 5495-5504
        • Cohen S.Y.
        • Dubois L.
        • Tadayoni R.
        • et al.
        Prevalence of reticular pseudodrusen in age-related macular degeneration with newly diagnosed choroidal neovascularisation.
        Br J Ophthalmol. 2007; 91: 354-359
        • Wang J.J.
        • Rochtchina E.
        • Lee A.J.
        • et al.
        Ten-year incidence and progression of age-related maculopathy: the Blue Mountains Eye Study.
        Ophthalmology. 2007; 114: 92-98
        • Klein R.
        • Meuer S.M.
        • Knudtson M.D.
        • et al.
        The epidemiology of retinal reticular drusen.
        Am J Ophthalmol. 2008; 145: 317-326
        • Smith R.T.
        • Merriam J.E.
        • Sohrab M.A.
        • et al.
        Complement factor H 402H variant and reticular macular disease.
        Arch Ophthalmol. 2011; 129: 1061-1066
        • Smailhodzic D.
        • Fleckenstein M.
        • Theelen T.
        • et al.
        Central areolar choroidal dystrophy (CACD) and age-related macular degeneration (AMD): differentiating characteristics in multimodal imaging.
        Invest Ophthalmol Vis Sci. 2011; 52: 8908-8918
        • Forte R.
        • Querques G.
        • Querques L.
        • et al.
        Multimodal imaging of dry age-related macular degeneration.
        Acta Ophthalmol. 2012; 90: e281-e287
        • Alten F.
        • Clemens C.R.
        • Milojcic C.
        • Eter N.
        Subretinal drusenoid deposits associated with pigment epithelium detachment in age-related macular degeneration.
        Retina. 2012; 32: 1727-1732
        • Ueda-Arakawa N.
        • Ooto S.
        • Tsujikawa A.
        • et al.
        Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients.
        Retina. 2013; 33: 490-497
        • Xu L.
        • Blonska A.M.
        • Pumariega N.M.
        • et al.
        Reticular macular disease is associated with multilobular geographic atrophy in age-related macular degeneration.
        Retina. 2013; 33: 1850-1862
        • Marsiglia M.
        • Boddu S.
        • Bearelly S.
        • et al.
        Association between geographic atrophy progression and reticular pseudodrusen in eyes with dry age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2013; 54: 7362-7369
        • Alten F.
        • Clemens C.R.
        • Heiduschka P.
        • Eter N.
        Characterisation of reticular pseudodrusen and their central target aspect in multi-spectral, confocal scanning laser ophthalmoscopy.
        Graefes Arch Clin Exp Ophthalmol. 2014; 252: 715-721
        • Suzuki M.
        • Sato T.
        • Spaide R.F.
        Pseudodrusen subtypes as delineated by multimodal imaging of the fundus.
        Am J Ophthalmol. 2014; 157: 1005-1012
        • Lee M.Y.
        • Ham D.I.
        Subretinal drusenoid deposits with increased autofluorescence in eyes with reticular pseudodrusen.
        Retina. 2014; 34: 69-76
        • Saade C.
        • Smith R.T.
        Reticular macular lesions: a review of the phenotypic hallmarks and their clinical significance.
        Clin Experiment Ophthalmol. 2014; 42: 865-874
        • Spaide R.F.
        • Curcio C.A.
        Drusen characterization with multimodal imaging.
        Retina. 2010; 30: 1441-1454
        • Steinberg J.S.
        • Gobel A.P.
        • Fleckenstein M.
        • et al.
        Reticular drusen in eyes with high-risk characteristics for progression to late-stage age-related macular degeneration.
        Br J Ophthalmol. 2015; 99: 1289-1294
        • Ueda-Arakawa N.
        • Ooto S.
        • Nakata I.
        • et al.
        Prevalence and genomic association of reticular pseudodrusen in age-related macular degeneration.
        Am J Ophthalmol. 2013; 155: 260-269 e2
        • Kim J.H.
        • Chang Y.S.
        • Kim J.W.
        • et al.
        Prevalence of subtypes of reticular pseudodrusen in newly diagnosed exudative age-related macular degeneration and polypoidal choroidal vasculopathy in Korean patients.
        Retina. 2015; 35: 2604-2612
        • De Bats F.
        • Wolff B.
        • Mauget-Faysse M.
        • et al.
        Association of reticular pseudodrusen and early onset drusen.
        ISRN Ophthalmol. 2013; 2013: 273085
        • Zweifel S.A.
        • Maygar I.
        • Berger W.
        • et al.
        Multimodal imaging of autosomal dominant drusen.
        Klin Monbl Augenheilkd. 2012; 229: 399-402
        • Gliem M.
        • Hendig D.
        • Finger R.P.
        • et al.
        Reticular pseudodrusen associated with a diseased bruch membrane in pseudoxanthoma elasticum.
        JAMA Ophthalmol. 2015; 133: 581-588
        • Gliem M.
        • Muller P.L.
        • Mangold E.
        • et al.
        Reticular pseudodrusen in Sorsby fundus dystrophy.
        Ophthalmology. 2015; 122: 1555-1562
        • Lally D.R.
        • Baumal C.
        Subretinal drusenoid deposits associated with complement-mediated IgA nephropathy.
        JAMA Ophthalmol. 2014; 132: 775-777
        • Aleman T.S.
        • Garrity S.T.
        • Brucker A.J.
        Retinal structure in vitamin A deficiency as explored with multimodal imaging.
        Doc Ophthalmol. 2013; 127: 239-243
        • Genead M.A.
        • Fishman G.A.
        • Lindeman M.
        Spectral-domain optical coherence tomography and fundus autofluorescence characteristics in patients with fundus albipunctatus and retinitis punctata albescens.
        Ophthalmic Genet. 2010; 31: 66-72
        • Joachim N.
        • Mitchell P.
        • Rochtchina E.
        • et al.
        Incidence and progression of reticular drusen in age-related macular degeneration: findings from an older Australian cohort.
        Ophthalmology. 2014; 121: 917-925
        • Owsley C.
        • Huisingh C.
        • Jackson G.R.
        • et al.
        Associations between abnormal rod-mediated dark adaptation and health and functioning in older adults with normal macular health.
        Invest Ophthalmol Vis Sci. 2014; 55: 4776-4789
        • Owsley C.
        • Huisingh C.
        • Clark M.E.
        • et al.
        Comparison of visual function in older eyes in the earliest stages of age-related macular degeneration to those in normal macular health.
        Curr Eye Res. 2015; : 1-7
        • Sarks J.
        • Arnold J.
        • Ho I.V.
        • et al.
        Evolution of reticular pseudodrusen.
        Br J Ophthalmol. 2011; 95: 979-985
        • Steinberg J.S.
        • Auge J.
        • Jaffe G.J.
        • et al.
        Longitudinal analysis of reticular drusen associated with geographic atrophy in age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2013; 54: 4054-4060
        • Davis M.D.
        • Gangnon R.E.
        • Lee L.Y.
        • et al.
        The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17.
        Arch Ophthalmol. 2005; 123: 1484-1498
        • Age-Related Eye Disease Study Research Group
        The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the Age-Related Eye Disease Study Report Number 6.
        Am J Ophthalmol. 2001; 132: 668-681
        • Querques G.
        • Querques L.
        • Martinelli D.
        • et al.
        Pathologic insights from integrated imaging of reticular pseudodrusen in age-related macular degeneration.
        Retina. 2011; 31: 518-526
        • Querques G.
        • Canoui-Poitrine F.
        • Coscas F.
        • et al.
        Analysis of progression of reticular pseudodrusen by spectral domain-optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2012; 53: 1264-1270
        • De Bats F.
        • Mathis T.
        • Mauget-Faysse M.
        • et al.
        Prevalence of reticular pseudodrusen in age-related macular degeneration using multimodal imaging.
        Retina. 2016; 36: 46-52
        • Wu Z.
        • Ayton L.N.
        • Makeyeva G.
        • et al.
        Impact of reticular pseudodrusen on microperimetry and multifocal electroretinography in intermediate age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2015; 56: 2100-2106
        • Klein R.
        • Klein B.E.
        • Linton K.L.
        Prevalence of age-related maculopathy. The Beaver Dam Eye Study.
        Ophthalmology. 1992; 99: 933-943
        • Boddu S.
        • Lee M.D.
        • Marsiglia M.
        • et al.
        Risk factors associated with reticular pseudodrusen versus large soft drusen.
        Am J Ophthalmol. 2014; 157: 985-993 e2
        • Hogg R.E.
        • Silva R.
        • Staurenghi G.
        • et al.
        Clinical characteristics of reticular pseudodrusen in the fellow eye of patients with unilateral neovascular age-related macular degeneration.
        Ophthalmology. 2014; 121: 1748-1755
        • Lee M.Y.
        • Yoon J.
        • Ham D.I.
        Clinical characteristics of reticular pseudodrusen in Korean patients.
        Am J Ophthalmol. 2012; 153: 530-535
        • Spaide R.F.
        Colocalization of pseudodrusen and subretinal drusenoid deposits using high-density en face spectral domain optical coherence tomography.
        Retina. 2014; 34: 2336-2345
        • Vongkulsiri S.
        • Ooto S.
        • Mrejen S.
        • et al.
        The lack of concordance between subretinal drusenoid deposits and large choroidal blood vessels.
        Am J Ophthalmol. 2014; 158: 710-715
        • Vongkulsiri S.
        • Suzuki M.
        • Spaide R.F.
        Colocalization error between the scanning laser ophthalmoscope infrared reflectance and optical coherence tomography images of the Heidelberg Spectralis.
        Retina. 2015; 35: 1211-1215
        • Querques G.
        • Querques L.
        • Forte R.
        • et al.
        Choroidal changes associated with reticular pseudodrusen.
        Invest Ophthalmol Vis Sci. 2012; 53: 1258-1263
        • Grewal D.S.
        • Chou J.
        • Rollins S.D.
        • Fawzi A.A.
        A pilot quantitative study of topographic correlation between reticular pseudodrusen and the choroidal vasculature using en face optical coherence tomography.
        PLoS One. 2014; 9: e92841
        • Yoneyama S.
        • Sakurada Y.
        • Mabuchi F.
        • et al.
        Genetic and clinical factors associated with reticular pseudodrusen in exudative age-related macular degeneration.
        Graefes Arch Clin Exp Ophthalmol. 2014; 252: 1435-1441
        • Eliasieh K.
        • Liets L.C.
        • Chalupa L.M.
        Cellular reorganization in the human retina during normal aging.
        Invest Ophthalmol Vis Sci. 2007; 48: 2824-2830
        • Curcio C.A.
        Photoreceptor topography in ageing and age-related maculopathy.
        Eye (Lond). 2001; 15: 376-383
        • Curcio C.A.
        • Millican C.L.
        • Allen K.A.
        • Kalina R.E.
        Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina.
        Invest Ophthalmol Vis Sci. 1993; 34: 3278-3296
        • Ach T.
        • Tolstik E.
        • Messinger J.D.
        • et al.
        Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration.
        Invest Ophthalmol Vis Sci. 2015; 56: 3242-3252
        • Ach T.
        • Huisingh C.
        • McGwin Jr., G.
        • et al.
        Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium.
        Invest Ophthalmol Vis Sci. 2014; 55: 4832-4841
        • Curcio C.A.
        • Messinger J.D.
        • Sloan K.R.
        • et al.
        Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections.
        Invest Ophthalmol Vis Sci. 2011; 52: 3943-3954
        • Ramrattan R.S.
        • van der Schaft T.L.
        • Mooy C.M.
        • et al.
        Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging.
        Invest Ophthalmol Vis Sci. 1994; 35: 2857-2864
        • Sohn E.H.
        • Flamme-Wiese M.J.
        • Whitmore S.S.
        • et al.
        Loss of CD34 expression in aging human choriocapillaris endothelial cells.
        PLoS One. 2014; 9: e86538
        • Khandhadia S.
        • Cipriani V.
        • Yates J.R.
        • Lotery A.J.
        Age-related macular degeneration and the complement system.
        Immunobiology. 2012; 217: 127-146
        • Skeie J.M.
        • Fingert J.H.
        • Russell S.R.
        • et al.
        Complement component C5a activates ICAM-1 expression on human choroidal endothelial cells.
        Invest Ophthalmol Vis Sci. 2010; 51: 5336-5342
        • Bhutto I.A.
        • Baba T.
        • Merges C.
        • et al.
        C-reactive protein and complement factor H in aged human eyes and eyes with age-related macular degeneration.
        Br J Ophthalmol. 2011; 95: 1323-1330
        • Dashti N.
        • McGwin G.
        • Owsley C.
        • Curcio C.A.
        Plasma apolipoproteins and risk for age related maculopathy.
        Br J Ophthalmol. 2006; 90: 1028-1033
        • Pumariega N.M.
        • Smith R.T.
        • Sohrab M.A.
        • et al.
        A prospective study of reticular macular disease.
        Ophthalmology. 2011; 118: 1619-1625
        • Tserentsoodol N.
        • Gordiyenko N.V.
        • Pascual I.
        • et al.
        Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors.
        Mol Vis. 2006; 12: 1319-1333
        • Curcio C.A.
        • Sloan K.R.
        • Kalina R.E.
        • Hendrickson A.E.
        Human photoreceptor topography.
        J Comp Neurol. 1990; 292: 497-523
        • Hoffmann E.M.
        • Zangwill L.M.
        • Crowston J.G.
        • Weinreb R.N.
        Optic disk size and glaucoma.
        Surv Ophthalmol. 2007; 52: 32-49
        • Curcio C.A.
        • Saunders P.L.
        • Younger P.W.
        • Malek G.
        Peripapillary chorioretinal atrophy: Bruch’s membrane changes and photoreceptor loss.
        Ophthalmology. 2000; 107: 334-343
        • Schaal K.B.
        • Legarreta A.D.
        • Gregori G.
        • et al.
        Widefield en face optical coherence tomography imaging of subretinal drusenoid deposits.
        Ophthalmic Surg Lasers Imaging Retina. 2015; 46: 550-559

      Linked Article