Advertisement

Visual Field Change and 24-Hour IOP-Related Profile with a Contact Lens Sensor in Treated Glaucoma Patients

Published:January 20, 2016DOI:https://doi.org/10.1016/j.ophtha.2015.11.020

      Purpose

      To test the hypothesis that a 24-hour recording of intraocular pressure (IOP)-related measurements derived from a contact lens sensor (CLS) correlates to the rate of visual field progression in treated glaucomatous eyes.

      Design

      Prospective, cross-sectional study.

      Participants

      Forty treated glaucomatous patients with 8 or more 24-2 visual field tests.

      Methods

      Twenty-four–hour recording with a CLS that provides IOP-related measurements.

      Main Outcome Measures

      Rates of visual field mean deviation (MD) change before and at the time of CLS recording and CLS parameters, namely number of large peaks, mean peak ratio, wake-to-sleep slope, amplitude and area under the cosine curve, and variability from the mean.

      Results

      When comparing the rate of MD change before and at the time of CLS recording of all patients, the average slope was −0.05 dB/year faster in the beginning compared with the end (P = 0.087), suggesting a deceleration of progression by the time of CLS recording. The number of long peaks and the mean peak ratio when patients were awake were the best predictors of faster progression. The combination of CLS parameters provided better measures of goodness of fit than Goldmann IOP parameters (mean, peak, and fluctuation) in the same period.

      Conclusions

      Intraocular pressure-related parameters obtained with 24-hour recording with a CLS were associated with the rate of visual field progression in treated glaucomatous eyes. This technology may be useful in detecting eyes at higher risk of glaucoma progression while receiving treatment.

      Abbreviations and Acronyms:

      CLS (contact lens sensor), GAT (Goldmann applanation tonometry), IOP (intraocular pressure), MD (mean deviation), mITT (modified intent-to-treat), PLS (partial least squares)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barkana Y.
        • Anis S.
        • Liebmann J.
        • et al.
        Clinical utility of intraocular pressure monitoring outside of normal office hours in patients with glaucoma.
        Arch Ophthalmol. 2006; 124: 793-797
        • Liu J.H.
        • Kripke D.F.
        • Hoffman R.E.
        • et al.
        Nocturnal elevation of intraocular pressure in young adults.
        Invest Ophthalmol Vis Sci. 1998; 39: 2707-2712
        • Liu J.H.
        • Kripke D.F.
        • Twa M.D.
        • et al.
        Twenty-four-hour pattern of intraocular pressure in the aging population.
        Invest Ophthalmol Vis Sci. 1999; 40: 2912-2917
        • Liu J.H.
        • Zhang X.
        • Kripke D.F.
        • Weinreb R.N.
        Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes.
        Invest Ophthalmol Vis Sci. 2003; 44: 1586-1590
        • Bagga H.
        • Liu J.H.
        • Weinreb R.N.
        Intraocular pressure measurements throughout the 24 h.
        Curr Opin Ophthalmol. 2009; 20: 79-83
        • Gordon M.O.
        • Beiser J.A.
        • Brandt J.D.
        • et al.
        The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma.
        Arch Ophthalmol. 2002; 120: 714-720
        • Leske M.C.
        • Heijl A.
        • Hyman L.
        • et al.
        Predictors of long-term progression in the early manifest glaucoma trial.
        Ophthalmology. 2007; 114: 1965-1972
      1. AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.
        Am J Ophthalmol. 2000; 130: 429-440
        • Musch D.C.
        • Gillespie B.W.
        • Lichter P.R.
        • et al.
        Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors.
        Ophthalmology. 2009; 116: 200-207
        • Miglior S.
        • Torri V.
        • Zeyen T.
        • et al.
        Intercurrent factors associated with the development of open-angle glaucoma in the European glaucoma prevention study.
        Am J Ophthalmol. 2007; 144: 266-275
        • Bengtsson B.
        • Heijl A.
        Diurnal IOP fluctuation: not an independent risk factor for glaucomatous visual field loss in high-risk ocular hypertension.
        Graefes Arch Clin Exp Ophthalmol. 2005; 243: 513-518
        • Choi J.
        • Kim K.H.
        • Jeong J.
        • et al.
        Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma.
        Invest Ophthalmol Vis Sci. 2007; 48: 104-111
        • Bergea B.
        • Bodin L.
        • Svedbergh B.
        Impact of intraocular pressure regulation on visual fields in open-angle glaucoma.
        Ophthalmology. 1999; 106: 997-1004
        • Prata T.S.
        • De Moraes C.G.
        • Kanadani F.N.
        • et al.
        Posture-induced intraocular pressure changes: considerations regarding body position in glaucoma patients.
        Surv Ophthalmol. 2010; 55: 445-453
        • Leonardi M.
        • Leuenberger P.
        • Bertrand D.
        • et al.
        First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens.
        Invest Ophthalmol Vis Sci. 2004; 45: 3113-3117
        • Leonardi M.
        • Pitchon E.M.
        • Bertsch A.
        • et al.
        Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes.
        Acta Ophthalmol. 2009; 87: 433-437
        • Liu J.H.
        • Mansouri K.
        • Weinreb R.N.
        Estimation of 24-hour intraocular pressure peak timing and variation using a contact lens sensor.
        PLoS One. 2015; 10: e0129529
        • Mansouri K.
        • Weinreb R.N.
        • Liu J.H.
        Efficacy of a contact lens sensor for monitoring 24-h intraocular pressure related patterns.
        PLoS One. 2015; 10: e0125530
        • Spry P.G.
        • Johnson C.A.
        Identification of progressive glaucomatous visual field loss.
        Surv Ophthalmol. 2002; 47: 158-173
        • Chauhan B.C.
        • Garway-Heath D.F.
        • Goñi F.J.
        • et al.
        Practical recommendations for measuring rates of visual field change in glaucoma.
        Br J Ophthalmol. 2008; 92: 569-573
        • Nouri-Mahdavi K.
        • Hoffman D.
        • Ralli M.
        • Caprioli J.
        Comparison of methods to predict visual field progression in glaucoma.
        Arch Ophthalmol. 2007; 125: 1176-1181
        • Gardiner S.K.
        • Swanson W.H.
        • Goren D.
        • et al.
        Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage.
        Ophthalmology. 2014; 121: 1359-1369
        • Mansouri K.
        • Shaarawy T.
        Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma.
        Br J Ophthalmol. 2011; 95: 627-629
        • Mansouri K.
        • Medeiros F.A.
        • Tafreshi A.
        • Weinreb R.N.
        Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma.
        Arch Ophthalmol. 2012; 130: 1534-1539
        • Cleveland W.S.
        • Devlin S.J.
        Locally-weighted regression: an approach to regression analysis by local fitting.
        J Am Stat Assoc. 1988; 83: 596-610
        • Garthwaite P.H.
        An interpretation of partial least squares.
        J Am Stat Assoc. 1994; 89: 122-127
        • Grippo T.M.
        • Liu J.H.
        • Zebardast N.
        • et al.
        Twenty-four-hour pattern of intraocular pressure in untreated patients with ocular hypertension.
        Invest Ophthalmol Vis Sci. 2013; 54: 512-517
        • Chauhan B.C.
        • Malik R.
        • Shuba L.M.
        • et al.
        Rates of glaucomatous visual field change in a large clinical population.
        Invest Ophthalmol Vis Sci. 2014; 55: 4135-4143
        • Nouri-Mahdavi K.
        • Hoffman D.
        • Coleman A.L.
        Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study.
        Ophthalmology. 2004; 111: 1627-1635
        • Rao H.L.
        • Addepalli U.K.
        • Jonnadula G.B.
        • et al.
        Relationship between intraocular pressure and rate of visual field progression in treated glaucoma.
        J Glaucoma. 2013; 22: 719-724
        • Lee J.
        • Kong M.
        • Kim J.
        • Kee C.
        Comparison of visual field progression between relatively low and high intraocular pressure groups in normal tension glaucoma patients.
        J Glaucoma. 2014; 23: 553-560
        • Gardiner S.K.
        • Demirel S.
        • De Moraes C.G.
        • et al.
        Series length used during trend analysis affects sensitivity to changes in progression rate in the ocular hypertension treatment study.
        Invest Ophthalmol Vis Sci. 2013; 54: 1252-1259
        • Burgoyne C.F.
        • Downs J.C.
        • Bellezza A.J.
        • et al.
        The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage.
        Prog Retina Eye Res. 2005; 24: 39-73
        • Fazio M.A.
        • Grytz R.
        • Bruno L.
        • et al.
        Regional variations in mechanical strain in the posterior human sclera.
        Invest Ophthalmol Vis Sci. 2012; 53: 5326-5333
        • Downs J.C.
        Optic nerve head biomechanics in aging and disease.
        Exp Eye Res. 2015; 133: 19-29