Influence of Ocular Wavefront Aberrations on Axial Length Elongation in Myopic Children Treated with Overnight Orthokeratology

Published:September 15, 2014DOI:https://doi.org/10.1016/j.ophtha.2014.07.042

      Purpose

      To determine ocular optical parameters that affect axial length elongation in myopic children undergoing overnight orthokeratology.

      Design

      Prospective, noncomparative study.

      Participants

      Fifty-nine subjects who met the inclusion criteria were enrolled in this study.

      Methods

      Axial length and ocular wavefront aberration were assessed before and 1 year after the start of orthokeratology. Corneal topography was performed, and then corneal multifocality was calculated for a 4-mm pupil. After evaluating simple correlations between axial elongation and optical parameters, multiple linear regression analysis was performed to identify explanatory variables with a statistically significant contribution to axial elongation.

      Main Outcome Measures

      Axial length and ocular wavefront aberration before and 1 year after the start of orthokeratology.

      Results

      Fifty-five subjects completed the 1-year follow-up examinations. At baseline, their age ranged from 7.2 to 12.0 years. The manifest spherical equivalent refractive error ranged from −3.50 to −0.75 diopters. The mean axial length significantly increased from 24.20 mm at baseline to 24.43 mm 1 year after treatment. The axial elongation showed significant simple correlations with the change in C 2 0, change in second-order aberration, change in coma-like aberration, change in spherical-like aberration, change in total higher-order aberrations, change in corneal multifocality, baseline age, and baseline spherical equivalent refractive error, but not C 4 0. Multiple linear regression analysis showed that the change in coma-like aberration was the most relevant variable.

      Conclusions

      Asymmetric corneal shapes, rather than concentric and radially symmetric shapes, have a considerable effect on retardation of axial elongation, suggesting that the inhibitory effect of orthokeratology on myopia progression is caused by mechanisms other than the reduction in peripheral hyperopic defocus.

      Abbreviations and Acronyms:

      D ( diopters), logMAR ( logarithm of the minimum angle of resolution), RMS ( root mean square), SD ( standard deviation)
      To read this article in full you will need to make a payment
      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dandona R.
        • Dandona L.
        Refractive error blindness.
        Bull World Health Organ. 2001; 79: 237-243
        • McCarty C.A.
        Uncorrected refractive error.
        Br J Ophthalmol. 2006; 90: 521-522
        • Sveinsson K.
        The refraction of Icelanders.
        Acta Ophthalmol (Copenh). 1982; 60: 779-787
        • Wensor M.
        • McCarty C.A.
        • Taylor H.R.
        Prevalence and risk factors of myopia in Victoria, Australia.
        Arch Ophthalmol. 1999; 117: 658-663
        • Wang Q.
        • Klein B.E.
        • Klein R.
        • Moss S.E.
        Refractive status in the Beaver Dam Eye Study.
        Invest Ophthalmol Vis Sci. 1994; 35: 4344-4347
        • Saw S.M.
        • Katz J.
        • Schein O.D.
        • et al.
        Epidemiology of myopia.
        Epidemiol Rev. 1996; 18: 175-187
        • Saw S.M.
        • Tong L.
        • Chua W.H.
        • et al.
        Incidence and progression of myopia in Singaporean school children.
        Invest Ophthalmol Vis Sci. 2005; 46: 51-57
        • Wang T.J.
        • Chiang T.H.
        • Wang T.H.
        • et al.
        Changes of the ocular refraction among freshmen in National Taiwan University between 1988 and 2005.
        Eye (Lond). 2009; 23: 1168-1169
        • Lin L.L.
        • Shih Y.F.
        • Hsiao C.K.
        • Chen C.J.
        Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000.
        Ann Acad Med Singapore. 2004; 33: 27-33
        • Tan N.W.
        • Saw S.M.
        • Lam D.S.
        • et al.
        Temporal variations in myopia progression in Singaporean children within an academic year.
        Optom Vis Sci. 2000; 77: 465-472
        • Vitale S.
        • Sperduto R.D.
        • Ferris III, F.L.
        Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004.
        Arch Ophthalmol. 2009; 127: 1632-1639
        • Jensen H.
        Myopia in teenagers. An eight-year follow-up study on myopia progression and risk factors.
        Acta Ophthalmol Scand. 1995; 73: 389-393
        • Saw S.M.
        • Gazzard G.
        • Shih-Yen E.C.
        • Chua W.H.
        Myopia and associated pathological complications.
        Ophthalmic Physiol Opt. 2005; 25: 381-391
        • Vitale S.
        • Cotch M.F.
        • Sperduto R.
        • Ellwein L.
        Costs of refractive correction of distance vision impairment in the United States, 1999-2002.
        Ophthalmology. 2006; 113: 2163-2170
        • Lim M.C.
        • Gazzard G.
        • Sim E.L.
        • et al.
        Direct costs of myopia in Singapore.
        Eye (Lond). 2009; 23: 1086-1089
        • Cho P.
        • Cheung S.W.
        • Edwards M.
        The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control.
        Curr Eye Res. 2005; 30: 71-80
        • Walline J.J.
        • Jones L.A.
        • Sinnott L.T.
        Corneal reshaping and myopia progression.
        Br J Ophthalmol. 2009; 93: 1181-1185
        • Kakita T.
        • Hiraoka T.
        • Oshika T.
        Influence of overnight orthokeratology on axial elongation in childhood myopia.
        Invest Ophthalmol Vis Sci. 2011; 52: 2170-2174
        • Cho P.
        • Cheung S.W.
        Retardation of myopia in orthokeratology (ROMIO) study: a 2-year randomized clinical trial.
        Invest Ophthalmol Vis Sci. 2012; 53: 7077-7085
        • Hiraoka T.
        • Kakita T.
        • Okamoto F.
        • et al.
        Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study.
        Invest Ophthalmol Vis Sci. 2012; 53: 3913-3919
        • Chen Z.
        • Niu L.
        • Xue F.
        • et al.
        Impact of pupil diameter on axial growth in orthokeratology.
        Optom Vis Sci. 2012; 89: 1636-1640
        • Smith III, E.L.
        • Hung L.F.
        • Huang J.
        Relative peripheral hyperopic defocus alters central refractive development in infant monkeys.
        Vision Res. 2009; 49: 2386-2392
        • Smith III, E.L.
        • Kee C.S.
        • Ramamirtham R.
        • et al.
        Peripheral vision can influence eye growth and refractive development in infant monkeys.
        Invest Ophthalmol Vis Sci. 2005; 46: 3965-3972
        • Seidemann A.
        • Schaeffel F.
        • Guirao A.
        • et al.
        Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects.
        J Opt Soc Am A Opt Image Sci Vis. 2002; 19: 2363-2373
        • Atchison D.A.
        • Jones C.E.
        • Schmid K.L.
        • et al.
        Eye shape in emmetropia and myopia.
        Invest Ophthalmol Vis Sci. 2004; 45: 3380-3386
        • Sankaridurg P.
        • Donovan L.
        • Varnas S.
        • et al.
        Spectacle lenses designed to reduce progression of myopia: 12-month results.
        Optom Vis Sci. 2010; 87: 631-641
        • Lin Z.
        • Martinez A.
        • Chen X.
        • et al.
        Peripheral defocus with single-vision spectacle lenses in myopic children.
        Optom Vis Sci. 2010; 87: 4-9
        • Charman W.N.
        • Mountford J.
        • Atchison D.A.
        • Markwell E.L.
        Peripheral refraction in orthokeratology patients.
        Optom Vis Sci. 2006; 83: 641-648
        • Mathur A.
        • Atchison D.A.
        Effect of orthokeratology on peripheral aberrations of the eye [report online].
        Optom Vis Sci. 2009; 86: E476-E484
        • Kang P.
        • Swarbrick H.
        Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses.
        Optom Vis Sci. 2011; 88: 476-482
        • Berntsen D.A.
        • Barr J.T.
        • Mitchell G.L.
        The effect of overnight contact lens corneal reshaping on higher-order aberrations and best-corrected visual acuity.
        Optom Vis Sci. 2005; 82: 490-497
        • Joslin C.E.
        • Wu S.M.
        • McMahon T.T.
        • Shahidi M.
        Higher-order wavefront aberrations in corneal refractive therapy.
        Optom Vis Sci. 2003; 80: 805-811
        • Kuroda T.
        • Fujikado T.
        • Maeda N.
        • et al.
        Wavefront analysis of higher-order aberrations in patients with cataract.
        J Cataract Refract Surg. 2002; 28: 438-444
        • Jones L.A.
        • Mitchell G.L.
        • Mutti D.O.
        • et al.
        Comparison of ocular component growth curves among refractive error groups in children.
        Invest Ophthalmol Vis Sci. 2005; 46: 2317-2327
        • Oshika T.
        • Mimura T.
        • Tanaka S.
        • et al.
        Apparent accommodation and corneal wavefront aberration in pseudophakic eyes.
        Invest Ophthalmol Vis Sci. 2002; 43: 2882-2886
        • Richler A.
        • Bear J.C.
        Refraction, nearwork and education. A population study in Newfoundland.
        Acta Ophthalmol (Copenh). 1980; 58: 468-478
        • Pärssinen O.
        • Lyyra A.L.
        Myopia and myopic progression among schoolchildren: a three-year follow-up study.
        Invest Ophthalmol Vis Sci. 1993; 34: 2794-2802
        • Charman W.N.
        Near vision, lags of accommodation and myopia.
        Ophthalmic Physiol Opt. 1999; 19: 126-133
        • Goss D.A.
        • Rainey B.B.
        Relationship of accommodative response and nearpoint phoria in a sample of myopic children.
        Optom Vis Sci. 1999; 76: 292-294
        • Gwiazda J.
        • Thorn F.
        • Bauer J.
        • Held R.
        Myopic children show insufficient accommodative response to blur.
        Invest Ophthalmol Vis Sci. 1993; 34: 690-694
        • Mutti D.O.
        • Zadnik K.
        • Fusaro R.E.
        • et al.
        Optical and structural development of the crystalline lens in childhood.
        Invest Ophthalmol Vis Sci. 1998; 39: 120-133
        • Zadnik K.
        • Mutti D.O.
        • Fusaro R.E.
        • Adams A.J.
        Longitudinal evidence of crystalline lens thinning in children.
        Invest Ophthalmol Vis Sci. 1995; 36: 1581-1587
        • Berntsen D.A.
        • Mutti D.O.
        • Zadnik K.
        Study of Theories about Myopia Progression (STAMP) design and baseline data.
        Optom Vis Sci. 2010; 87: 823-832
        • Mutti D.O.
        • Sholtz R.I.
        • Friedman N.E.
        • Zadnik K.
        Peripheral refraction and ocular shape in children.
        Invest Ophthalmol Vis Sci. 2000; 41: 1022-1030
        • Drexler W.
        • Findl O.
        • Schmetterer L.
        • et al.
        Eye elongation during accommodation in humans: differences between emmetropes and myopes.
        Invest Ophthalmol Vis Sci. 1998; 39: 2140-2147
        • Shum P.J.
        • Ko L.S.
        • Ng C.L.
        • Lin S.L.
        A biometric study of ocular changes during accommodation.
        Am J Ophthalmol. 1993; 115: 76-81
        • Phillips J.R.
        Monovision slows juvenile myopia progression unilaterally.
        Br J Ophthalmol. 2005; 89: 1196-1200
        • Flitcroft D.I.
        The complex interactions of retinal, optical and environmental factors in myopia aetiology.
        Prog Retin Eye Res. 2012; 31: 622-660
        • Phillips C.I.
        Aetiology of myopia.
        Br J Ophthalmol. 1990; 74: 47-48
        • Mutti D.O.
        • Sinnott L.T.
        • Mitchell G.L.
        • et al.
        • CLEERE Study Group
        Relative peripheral refractive error and the risk of onset and progression of myopia in children.
        Invest Ophthalmol Vis Sci. 2011; 52: 199-205
        • Tong L.
        • Huang X.L.
        • Koh A.L.
        • et al.
        Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine.
        Ophthalmology. 2009; 116: 572-579
        • Hiraoka T.
        • Okamoto C.
        • Ishii Y.
        • et al.
        Recovery of corneal irregular astigmatism, ocular higher-order aberrations, and contrast sensitivity after discontinuation of overnight orthokeratology.
        Br J Ophthalmol. 2009; 93: 203-208
        • Goss D.A.
        • Cox V.D.
        Trends in the change of clinical refractive error in myopes.
        J Am Optom Assoc. 1985; 56: 608-613
        • Hiraoka T.
        • Okamoto C.
        • Ishii Y.
        • et al.
        Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology.
        Invest Ophthalmol Vis Sci. 2007; 48: 550-556