Advertisement

En Face Enhanced-Depth Swept-Source Optical Coherence Tomography Features of Chronic Central Serous Chorioretinopathy

Published:November 27, 2013DOI:https://doi.org/10.1016/j.ophtha.2013.10.014

      Objective

      To characterize en face features of the retinal pigment epithelium (RPE) and choroid in eyes with chronic central serous chorioretinopathy (CSCR) using a high-speed, enhanced-depth swept-source optical coherence tomography (SS-OCT) prototype.

      Design

      Consecutive patients with chronic CSCR were prospectively examined with SS-OCT.

      Participants

      Fifteen eyes of 13 patients.

      Methods

      Three-dimensional 6×6 mm macular cube raster scans were obtained with SS-OCT operating at 1050 nm wavelength and 100 000 A-lines/sec with 6 μm axial resolution. Segmentation of the RPE generated a reference surface; en face SS-OCT images of the RPE and choroid were extracted at varying depths every 3.5 μm (1 pixel). Abnormal features were characterized by systematic analysis of multimodal fundus imaging, including color photographs, fundus autofluorescence, fluorescein angiography, and indocyanine-green angiography (ICGA).

      Main Outcome Measures

      En face SS-OCT morphology of the RPE and individual choroidal layers.

      Results

      En face SS-OCT imaging at the RPE level revealed absence of signal corresponding to RPE detachment or RPE loss in 15 of 15 (100%) eyes. En face SS-OCT imaging at the choriocapillaris level showed focally enlarged vessels in 8 of 15 eyes (53%). At the level of Sattler's layer, en face SS-OCT documented focal choroidal dilation in 8 of 15 eyes (53%) and diffuse choroidal dilation in 7 of 15 eyes (47%). At the level of Haller's layer, these same features were observed in 3 of 15 eyes (20%) and 12 of 15 eyes (80%), respectively. In all affected eyes, these choroidal vascular abnormalities were seen just below areas of RPE abnormalities. In 2 eyes with secondary choroidal neovascularization (CNV), distinct en face SS-OCT features corresponded to the neovascular lesions.

      Conclusions

      High-speed, enhanced-depth SS-OCT at 1050 nm wavelength enables the visualization of pathologic features of the RPE and choroid in eyes with chronic CSCR not usually appreciated with standard spectral domain (SD) OCT. En face SS-OCT imaging seems to be a useful tool in the identification of CNV without the use of angiography. This in vivo documentation of the RPE and choroidal vasculature at variable depths may help elucidate the pathophysiology of disease and can contribute to the diagnosis and management of chronic CSCR.
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gass J.D.
        Pathogenesis of disciform detachment of the neuroepithelium.
        Am J Ophthalmol. 1967; 63: 1-139
        • Yannuzzi L.A.
        Type A behavior and central serous chorioretinopathy.
        Trans Am Ophthalmol Soc. 1986; 84: 799-845
        • Yannuzzi L.A.
        • Shakin J.L.
        • Fisher Y.L.
        • Altomonte M.A.
        Peripheral retinal detachments and retinal pigment epithelial atrophic tracts secondary to central serous pigment epitheliopathy.
        Ophthalmology. 1984; 91: 1554-1572
        • Spaide R.F.
        • Campeas L.
        • Haas A.
        • et al.
        Central serous chorioretinopathy in younger adults.
        Ophthalmology. 1996; 103: 2070-2079
        • Kitzmann A.S.
        • Pulido J.S.
        • Diehl N.N.
        • et al.
        The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980-2002.
        Ophthalmology. 2008; 115: 169-173
        • Ross A.
        • Ross A.H.
        • Mohamed Q.
        Review and update of central serous chorioretinopathy.
        Curr Opin Ophthalmol. 2011; 22: 166-173
        • Piccolino F.C.
        • de la Longrais R.R.
        • Ravera G.
        • et al.
        The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy.
        Am J Ophthalmol. 2005; 139: 87-99
        • Gilbert C.M.
        • Owens S.L.
        • Smith P.D.
        • Fine S.L.
        Long-term follow-up of central serous chorioretinopathy.
        Br J Ophthalmol. 1984; 68: 815-820
        • Liew G.
        • Quin G.
        • Gillies M.
        • Fraser-Bell S.
        Central serous chorioretinopathy: a review of epidemiology and pathophysiology.
        Clin Experiment Ophthalmol. 2013; 41: 201-214
        • Gomolin J.E.
        Choroidal neovascularization and central serous chorioretinopathy.
        Can J Ophthalmol. 1989; 24: 20-23
        • Bouzas E.A.
        • Scott M.H.
        • Mastorakos G.
        • et al.
        Central serous chorioretinopathy in endogenous hypercortisolism.
        Arch Ophthalmol. 1993; 111: 1229-1233
        • Bouzas E.A.
        • Karadimas P.
        • Pournaras C.J.
        Central serous chorioretinopathy and glucocorticoids.
        Surv Ophthalmol. 2002; 47: 431-448
        • Quillen D.A.
        • Gass D.M.
        • Brod R.D.
        • et al.
        Central serous chorioretinopathy in women.
        Ophthalmology. 1996; 103: 72-79
        • Carvalho-Recchia C.A.
        • Yannuzzi L.A.
        • Negrao S.
        • et al.
        Corticosteroids and central serous chorioretinopathy.
        Ophthalmology. 2002; 109: 1834-1837
        • Haimovici R.
        • Rumelt S.
        • Melby J.
        Endocrine abnormalities in patients with central serous chorioretinopathy.
        Ophthalmology. 2003; 110: 698-703
        • Harada T.
        • Harada K.
        Six cases of central serous chorioretinopathy induced by systemic corticosteroid therapy.
        Doc Ophthalmol. 1985; 60: 37-44
        • Tittl M.
        • Maar N.
        • Polska E.
        • et al.
        Choroidal hemodynamic changes during isometric exercise in patients with inactive central serous chorioretinopathy.
        Invest Ophthalmol Vis Sci. 2005; 46: 4717-4721
        • Fawzi A.A.
        • Holland G.N.
        • Kreiger A.E.
        • et al.
        Central serous chorioretinopathy after solid organ transplantation.
        Ophthalmology. 2006; 113: 805-813
        • Thoelen A.M.
        • Bernasconi P.P.
        • Schmid C.
        • Messmer E.P.
        Central serous chorioretinopathy associated with a carcinoma of the adrenal cortex.
        Retina. 2000; 20: 98-99
        • Fawzi A.A.
        • Cunningham Jr., E.T.
        Central serous chorioretinopathy after bone marrow transplantation.
        Am J Ophthalmol. 2001; 131: 804-805
        • Rahbani-Nobar M.B.
        • Javadzadeh A.
        • Ghojazadeh L.
        • et al.
        The effect of Helicobacter pylori treatment on remission of idiopathic central serous chorioretinopathy.
        Mol Vis [serial online]. 2011; 17 (Available at:) (Accessed September 29, 2013): 99-103
        • Imamura Y.
        • Fujiwara T.
        • Margolis R.
        • Spaide R.F.
        Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy.
        Retina. 2009; 29: 1469-1473
        • Kim Y.T.
        • Kang S.W.
        • Bai K.H.
        Choroidal thickness in both eyes of patients with unilateral active central serous chorioretinopathy.
        Eye (Lond). 2011; 25: 1635-1640
        • Drexler W.
        • Fujimoto J.G.
        State-of-the-art retinal optical coherence tomography.
        Prog Retin Eye Res. 2008; 27: 45-88
        • Regatieri C.V.
        • Branchini L.
        • Fujimoto J.G.
        • Duker J.S.
        Choroidal imaging using spectral-domain optical coherence tomography.
        Retina. 2012; 32: 865-876
        • Spaide R.F.
        • Koizumi H.
        • Pozzoni M.C.
        Enhanced depth imaging spectral-domain optical coherence tomography.
        Am J Ophthalmol. 2008; 146: 496-500
        • Potsaid B.
        • Baumann B.
        • Huang D.
        • et al.
        Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second.
        Opt Express [serial online]. 2010; 18 (Available at:) (Accessed September 29, 2013): 20029-20048
        • Motaghiannezam R.
        • Schwartz D.M.
        • Fraser S.E.
        In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm.
        Invest Ophthalmol Vis Sci. 2012; 53: 2337-2348
        • Unterhuber A.
        • Považay B.
        • Hermann B.
        • et al.
        In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid.
        Opt Express [serial online]. 2005; 13 (Available at:) (Accessed September 29, 2013): 3252-3258
      1. American National Standard for Safe Use of Lasers. Orlando, FL: Laser Institute of America; 2007. ANSI Z136.1-2007. Available at: http://www.lia.org/PDF/Z136_1_s.pdf. Accessed September 29, 2013.

        • Kraus M.F.
        • Potsaid B.
        • Mayer M.A.
        • et al.
        Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns.
        Biomed Opt Express [serial online]. 2012; 3 (Available at:) (Accessed September 29, 2013): 1182-1199
        • Gorczynska I.
        • Srinivasan V.J.
        • Vuong L.N.
        • et al.
        Projection OCT fundus imaging for visualizing outer retinal pathology in non-exudative age related macular degeneration.
        Br J Ophthalmol. 2009; 93: 603-609
        • Margolis R.
        • Spaide R.F.
        A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes.
        Am J Ophthalmol. 2009; 147: 811-815
        • Spaide R.
        Autofluorescence from the outer retina and subretinal space: hypothesis and review.
        Retina. 2008; 28: 5-35
        • van Velthoven M.E.
        • Verbraak F.D.
        • Garcia P.M.
        • et al.
        Evaluation of central serous retinopathy with en face optical coherence tomography.
        Br J Ophthalmol. 2005; 89: 1483-1488
        • Prunte C.
        • Flammer J.
        Choroidal capillary and venous congestion in central serous chorioretinopathy.
        Am J Ophthalmol. 1996; 121: 26-34
        • Tewari H.K.
        • Gadia R.
        • Kumar D.
        • et al.
        Sympathetic-parasympathetic activity and reactivity in central serous chorioretinopathy: a case-control study.
        Invest Ophthalmol Vis Sci. 2006; 47: 3474-3478
        • Piccolino F.C.
        • Borgia L.
        Central serous chorioretinopathy and indocyanine green angiography.
        Retina. 1994; 14: 231-242
        • Tittl M.K.
        • Spaide R.F.
        • Wong D.
        • et al.
        Systemic findings associated with central serous chorioretinopathy.
        Am J Ophthalmol. 1999; 128: 63-68
        • Haimovici R.
        • Koh S.
        • Gagnon D.R.
        • et al.
        Risk factors for central serous chorioretinopathy: a case-control study.
        Ophthalmology. 2004; 111: 244-249
        • Guyer D.R.
        • Yannuzzi L.A.
        • Slakter J.S.
        • et al.
        Digital indocyanine green videoangiography of central serous chorioretinopathy.
        Arch Ophthalmol. 1994; 112: 1057-1062
        • Inoue R.
        • Sawa M.
        • Tsujikawa M.
        • Gomi F.
        Association between the efficacy of photodynamic therapy and indocyanine green angiography findings for central serous chorioretinopathy.
        Am J Ophthalmol. 2010; 149: 441-446
        • Rouvas A.
        • Stavrakas P.
        • Theodossiadis P.G.
        • et al.
        Long-term results of half-fluence photodynamic therapy for chronic central serous chorioretinopathy.
        Eur J Ophthalmol. 2012; 22: 417-422