Cataract Surgery in Patients with Fuchs' Endothelial Corneal Dystrophy

When to Consider a Triple Procedure
Published:November 27, 2013DOI:https://doi.org/10.1016/j.ophtha.2013.09.047

      Purpose

      To ascertain preoperative and intraoperative factors that predict the need for endothelial keratoplasty (EK) in patients with Fuchs' endothelial corneal dystrophy (FECD) undergoing cataract surgery.

      Design

      Prospective, observational cohort study.

      Participants

      Eighty-nine patients (89 eyes) with FECD who require cataract surgery.

      Methods

      One month before cataract surgery, we assessed best-corrected visual acuity, contrast sensitivity, straylight, keratometry, ultrasonic pachymetry, intraocular pressure, 7 corneal features of FECD and cataract density at slit-lamp examination, and corneal backscatter using in vivo confocal microscopy (IVCM; Confoscan 4, NIDEK Technologies, Padova, Italy). After surgery, measurements were repeated at 1, 2, and 12 months. We used stepwise binary logistic regression analysis to evaluate 30 preoperative and 5 intraoperative parameters for their ability to predict the postoperative need for EK. Receiver operating characteristic (ROC) curves of the predictive factors were used to identify their optimal cutoff points.

      Main Outcome Measures

      Central corneal thickness (CCT) and backscatter at the basal epithelial cell layer (EV).

      Results

      After cataract surgery, 35 (39%) of 89 eyes underwent EK to restore vision. Of all preoperative and intraoperative parameters, only CCT and EV were identified as significant factors, predictive of the need for EK. The area under the ROC curve of EV was significantly higher than that of CCT ( P = 0.003), whereas a combination of both factors in a linear discriminant function did not improve the predictive value ( P = 0.66). As optimal cutoff points, we chose 1894 scatter units for EV and 630 μm for CCT. Both cutoff points correspond with a specificity of 94% and represent sensitivity of 63% for EV and 40% for CCT.

      Conclusions

      Backscatter at the basal epithelial cell layer measured by IVCM predicts the need for EK after cataract surgery in patients with FECD. As an indicator for the corneal hydration state, the EV improves patient selection for combined cataract surgery and EK. In deciding whether to perform a triple procedure, CCT remains a less effective, but adequate, alternative. Regardless of the predictive factor used, a tailor-made approach is recommended accounting for individuals' expectations.
      To read this article in full you will need to make a payment
      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adamis A.P.
        • Filatov V.
        • Tripathi B.J.
        • Tripathi R.C.
        Fuchs' endothelial dystrophy of the cornea.
        Surv Ophthalmol. 1993; 38: 149-168
        • Bourne W.M.
        • Nelson L.R.
        • Hodge D.O.
        Continued endothelial cell loss ten years after lens implantation.
        Ophthalmology. 1994; 101 (discussion 1022–3): 1014-1022
        • Hayashi K.
        • Hayashi H.
        • Nakao F.
        • Hayashi F.
        Risk factors for corneal endothelial injury during phacoemulsification.
        J Cataract Refract Surg. 1996; 22: 1079-1084
        • Walkow T.
        • Anders N.
        • Klebe S.
        Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters.
        J Cataract Refract Surg. 2000; 26: 727-732
        • Beesley R.D.
        • Olson R.J.
        • Brady S.E.
        The effects of prolonged phacoemulsification time on the corneal endothelium.
        Ann Ophthalmol. 1986; 18 (222): 216-219
        • Covert D.J.
        • Koenig S.B.
        New triple procedure: Descemet's stripping and automated endothelial keratoplasty combined with phacoemulsification and intraocular lens implantation.
        Ophthalmology. 2007; 114: 1272-1277
        • Suh L.H.
        • Yoo S.H.
        • Deobhakta A.
        • et al.
        Complications of Descemet's stripping with automated endothelial keratoplasty: survey of 118 eyes at one institute.
        Ophthalmology. 2008; 115: 1517-1524
        • Jordan C.S.
        • Price M.O.
        • Trespalacios R.
        • Price Jr., F.W.
        Graft rejection episodes after Descemet stripping with endothelial keratoplasty. Part one: clinical signs and symptoms.
        Br J Ophthalmol. 2009; 93: 387-390
        • Krachmer J.H.
        • Purcell Jr., J.J.
        • Young C.W.
        • Bucher K.D.
        Corneal endothelial dystrophy. A study of 64 families.
        Arch Ophthalmol. 1978; 96: 2036-2039
        • Chylack Jr., L.T.
        • Wolfe J.K.
        • Singer D.M.
        • et al.
        Longitudinal Study of Cataract Study Group. The Lens Opacities Classification System III.
        Arch Ophthalmol. 1993; 111: 831-836
        • Ferris III, F.L.
        • Kassoff A.
        • Bresnick G.H.
        • Bailey I.
        New visual acuity charts for clinical research.
        Am J Ophthalmol. 1982; 94: 91-96
        • Ferris III, F.L.
        • Sperduto R.D.
        Standardized illumination for visual acuity testing in clinical research.
        Am J Ophthalmol. 1982; 94: 97-98
        • Bailey I.L.
        • Bullimore M.A.
        • Raasch T.W.
        • Taylor H.R.
        Clinical grading and the effects of scaling.
        Invest Ophthalmol Vis Sci. 1991; 32: 422-432
        • Pelli D.G.
        • Robson J.G.
        • Wilkins A.J.
        The design of a new letter chart for measuring contrast sensitivity.
        Clin Vis Sci. 1988; 2: 187-199
        • Elliott D.B.
        • Bullimore M.A.
        • Bailey I.L.
        Improving the reliability of the Pelli-Robson contrast sensitivity test.
        Clin Vis Sci. 1991; 6: 471-475
        • Franssen L.
        • Coppens J.E.
        • van den Berg T.J.
        Compensation comparison method for assessment of retinal straylight.
        Invest Ophthalmol Vis Sci. 2006; 47: 768-776
        • Hillenaar T.
        • Weenen C.
        • Wubbels R.J.
        • Remeijer L.
        Endothelial involvement in herpes simplex virus keratitis: an in vivo confocal microscopy study.
        Ophthalmology. 2009; 116: 2077-2086
        • Hillenaar T.
        • Cals R.H.
        • Eilers P.H.
        • et al.
        Normative database for corneal backscatter analysis by in vivo confocal microscopy.
        Invest Ophthalmol Vis Sci. 2011; 52: 7274-7281
        • Hillenaar T.
        • Sicam V.A.
        • Vermeer K.A.
        • et al.
        Wide-range calibration of corneal backscatter analysis by in vivo confocal microscopy.
        Invest Ophthalmol Vis Sci. 2011; 52: 2136-2146
        • Mangione C.M.
        • Lee P.P.
        • Gutierrez P.R.
        • et al.
        National Eye Institute Visual Function Questionnaire Field Test Investigators. Development of the 25-item National Eye Institute Visual Function Questionnaire.
        Arch Ophthalmol. 2001; 119: 1050-1058
        • Clemons T.E.
        • Chew E.Y.
        • Bressler S.B.
        • McBee W.
        • Age-Related Eye Disease Study Research Group
        National Eye Institute Visual Function Questionnaire in the Age-Related Eye Disease Study (AREDS): AREDS report no. 10.
        Arch Ophthalmol. 2003; 121: 211-217
        • Field A.P.
        Discovering Statistics Using SPSS.
        3rd ed. SAGE, London2009: 458-462
        • Field A.P.
        Discovering Statistics Using SPSS.
        3rd ed. SAGE, London2009: 264-315
        • Ferreras A.
        • Pablo L.E.
        • Larrosa J.M.
        • et al.
        Discriminating between normal and glaucoma-damaged eyes with the Heidelberg Retina Tomograph 3.
        Ophthalmology. 2008; 115: 775-781
        • DeLong E.R.
        • DeLong D.M.
        • Clarke-Pearson D.L.
        Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach.
        Biometrics. 1988; 44: 837-845
        • Cohen M.
        Report of the proceedings of the section on Ophthalmology of the New York Academy of Medicine.
        Arch Ophthalmol. 1913; 42: 173-183
        • Doughty M.J.
        • Zaman M.L.
        Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach.
        Surv Ophthalmol. 2000; 44: 367-408
        • Hillenaar T.
        • van Cleynenbreugel H.
        • Remeijer L.
        How normal is the transparent cornea? Effects of aging on corneal morphology.
        Ophthalmology. 2012; 119: 241-248
        • Mustonen R.K.
        • McDonald M.B.
        • Srivannaboon S.
        • et al.
        In vivo confocal microscopy of Fuchs' endothelial dystrophy.
        Cornea. 1998; 17: 493-503
        • Chiou A.G.
        • Kaufman S.C.
        • Beuerman R.W.
        • et al.
        Confocal microscopy in cornea guttata and Fuchs' endothelial dystrophy.
        Br J Ophthalmol. 1999; 83: 185-189
        • Grupcheva C.N.
        • Craig J.P.
        • Sherwin T.
        • McGhee C.N.
        Differential diagnosis of corneal oedema assisted by in vivo confocal microscopy.
        Clin Experiment Ophthalmol. 2001; 29: 133-137
        • Iwamoto T.
        • DeVoe A.G.
        Electron microscopic studies on Fuchs' combined dystrophy: II. Anterior portion of the cornea.
        Invest Ophthalmol. 1971; 10: 29-40
        • Alomar T.S.
        • Al-Aqaba M.
        • Gray T.
        • et al.
        Histological and confocal microscopy changes in chronic corneal edema: implications for endothelial transplantation.
        Invest Ophthalmol Vis Sci. 2011; 52: 8193-8207
        • McLaren J.W.
        • Bourne W.M.
        • Patel S.V.
        Standardization of corneal haze measurement in confocal microscopy.
        Invest Ophthalmol Vis Sci. 2010; 51: 5610-5616
        • Morishige N.
        • Takahashi N.
        • Chikamoto N.
        • Nishida T.
        Quantitative evaluation of corneal epithelial oedema by confocal microscopy.
        Clin Experiment Ophthalmol. 2009; 37: 249-253
        • Patel S.V.
        • Baratz K.H.
        • Hodge D.O.
        • et al.
        The effect of corneal light scatter on vision after Descemet stripping with endothelial keratoplasty.
        Arch Ophthalmol. 2009; 127: 153-160
        • Baratz K.H.
        • McLaren J.W.
        • Maguire L.J.
        • Patel S.V.
        Corneal haze determined by confocal microscopy 2 years after Descemet stripping with endothelial keratoplasty for Fuchs corneal dystrophy.
        Arch Ophthalmol. 2012; 130: 868-874
        • Feuk T.
        • McQueen D.
        The angular dependence of light scattered from rabbit corneas.
        Invest Ophthalmol. 1971; 10: 294-299
        • Feuk T.
        The wavelength dependence of scattered light intensity in rabbit corneas.
        IEEE Trans Biomed Eng. 1971; 18: 92-96
        • American Academy of Ophthalmology Anterior Segment Panel
        Preferred Practice Pattern Guidelines. Cataract in the adult eye.
        American Academy of Ophthalmology, San Francisco, CA2001
        • Seitzman G.D.
        • Gottsch J.D.
        • Stark W.J.
        Cataract surgery in patients with Fuchs' corneal dystrophy: expanding recommendations for cataract surgery without simultaneous keratoplasty.
        Ophthalmology. 2005; 112: 441-446
        • Luo Y.H.
        • Wong R.
        Cataract surgery and Fuchs' corneal dystrophy [letter].
        Ophthalmology. 2005; 112 (author reply 2054–5): 2054
        • Cheng A.C.
        • Rao S.K.
        • Lam D.S.
        Surgery in patients with Fuchs' [letter].
        Ophthalmology. 2006; 113 (author reply 504): 502-503
        • Ambrosio Jr., R.
        • Netto M.V.
        • Wilson S.E.
        Surgery in patients with Fuchs' [letter].
        Ophthalmology. 2006; 113 (author reply 504): 503
        • Ti S.E.
        • Chee S.P.
        Cataract surgery in patients with Fuchs' [letter].
        Ophthalmology. 2006; 113: 1883-1884
        • Seitzman G.D.
        • Gottsch J.D.
        • Stark W.J.
        Surgery in patients with Fuchs': author reply [letter].
        Ophthalmology. 2006; 113: 504
        • Kopplin L.J.
        • Przepyszny K.
        • Schmotzer B.
        • Fuchs' Endothelial Corneal Dystrophy Genetics Multi-Center Study Group
        • et al.
        Relationship of Fuchs′ endothelial corneal dystrophy severity to central corneal thickness.
        Arch Ophthalmol. 2012; 130: 433-439
        • Seitzman G.D.
        • Gottsch J.D.
        • Stark W.J.
        Cataract surgery and Fuchs' corneal dystrophy: author reply [letter].
        Ophthalmology. 2005; 112: 2054-2055
        • Dick H.B.
        • Kohnen T.
        • Jacobi F.K.
        • Jacobi K.W.
        Long-term endothelial cell loss following phacoemulsification through a temporal clear corneal incision.
        J Cataract Refract Surg. 1996; 22: 63-71
        • Seitzman G.D.
        Cataract surgery in Fuchs' dystrophy.
        Curr Opin Ophthalmol. 2005; 16: 241-245
        • O'Brien P.D.
        • Fitzpatrick P.
        • Kilmartin D.J.
        • Beatty S.
        Risk factors for endothelial cell loss after phacoemulsification surgery by a junior resident.
        J Cataract Refract Surg. 2004; 30: 839-843
        • Arshinoff S.A.
        Dispersive-cohesive viscoelastic soft shell technique.
        J Cataract Refract Surg. 1999; 25: 167-173
        • Tarnawska D.
        • Wylegala E.
        Effectiveness of the soft-shell technique in patients with Fuchs' endothelial dystrophy.
        J Cataract Refract Surg. 2007; 33: 1907-1912