Phase-Variance Optical Coherence Tomography

A Technique for Noninvasive Angiography
Published:October 22, 2013DOI:https://doi.org/10.1016/j.ophtha.2013.09.002

      Purpose

      Phase-variance optical coherence tomography (PV-OCT) provides volumetric imaging of the retinal vasculature without the need for intravenous injection of a fluorophore. We compare images from PV-OCT and fluorescein angiography (FA) for normal individuals and patients with age-related macular degeneration (AMD) and diabetic retinopathy.

      Design

      This is an evaluation of a diagnostic technology.

      Participants

      Four patients underwent comparative retinovascular imaging using FA and PV-OCT. Imaging was performed on 1 normal individual, 1 patient with dry AMD, 1 patient with exudative AMD, and 1 patient with nonproliferative diabetic retinopathy.

      Methods

      Fluorescein angiography imaging was performed using a Topcon Corp (Tokyo, Japan) (TRC-50IX) camera with a resolution of 1280 (H) × 1024 (V) pixels. The PV-OCT images were generated by software data processing of the entire cross-sectional image from consecutively acquired B-scans. Bulk axial motion was calculated and corrected for each transverse location, reducing the phase noise introduced from eye motion. Phase variance was calculated through the variance of the motion-corrected phase changes acquired within multiple B-scans at the same position. Repeating these calculations over the entire volumetric scan produced a 3-dimensional PV-OCT representation of the vasculature.

      Main Outcome Measures

      Feasibility of rendering retinal and choroidal microvasculature using PV-OCT was compared qualitatively with FA, the current gold standard for retinovascular imaging.

      Results

      Phase-variance OCT noninvasively rendered a 2-dimensional depth color-coded vasculature map of the retinal and choroidal vasculature. The choriocapillaris was imaged with better resolution of microvascular detail using PV-OCT. Areas of geographic atrophy and choroidal neovascularization imaged by FA were depicted by PV-OCT. Regions of capillary nonperfusion from diabetic retinopathy were shown by both imaging techniques; there was not complete correspondence between microaneurysms shown on FA and PV-OCT images.

      Conclusions

      Phase-variance OCT yields high-resolution imaging of the retinal and choroidal microvasculature that compares favorably with FA.

      References

        • Alvis D.
        Happy 50th birthday [letter].
        Ophthalmology. 2009; 116: 2259
        • Marmor M.F.
        • Ravin J.G.
        Fluorescein angiography: insight and serendipity a half century ago.
        Arch Ophthalmol. 2011; 129: 943-948
        • Swanson E.A.
        • Huang D.
        Ophthalmic OCT reaches $1 billion per year.
        Retin Physician. 2011; 8 (58, 59, 62): 45
        • Lipson B.K.
        • Yannuzzi L.A.
        Complications of intravenous fluorescein injections.
        Int Ophthalmol Clin. 1989; 29: 200-205
        • Owens S.L.
        Indocyanine green angiography.
        Br J Ophthalmol. 1996; 80: 263-266
        • Pauleikhoff D.
        • Spital G.
        • Radermacher M.
        • et al.
        A fluorescein and indocyanine green angiographic study of choriocapillaris in age-related macular disease.
        Arch Ophthalmol. 1999; 117: 1353-1358
        • Flower R.W.
        • Fryczkowski A.W.
        • McLeod D.S.
        Variability in choriocapillaris blood flow distribution.
        Invest Ophthalmol Vis Sci. 1995; 36: 1247-1258
        • Huang D.
        • Swanson E.A.
        • Lin C.P.
        • et al.
        Optical coherence tomography.
        Science. 1991; 254: 1178-1181
        • van Velthoven M.E.
        • Faber D.J.
        • Verbraak F.D.
        • et al.
        Recent developments in optical coherence tomography for imaging the retina.
        Prog Retin Eye Res. 2007; 26: 57-77
        • Fingler J.
        • Schwartz D.
        • Yang C.
        • Fraser S.E.
        Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography.
        Opt Express [serial online]. 2007; 15 (Available at:) (Accessed August 24, 2013): 12636-12653
        • Fingler J.
        • Readhead C.
        • Schwartz D.M.
        • Fraser S.E.
        Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid.
        Invest Ophthalmol Vis Sci. 2008; 49: 5055-5059
        • Fingler J.
        • Zawadzki R.J.
        • Werner J.S.
        • et al.
        Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique.
        Opt Express [serial online]. 2009; 17 (Available at:) (Accessed August 24, 2013): 22190-22200
        • Kim D.Y.
        • Fingler J.
        • Werner J.S.
        • et al.
        In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography.
        Biomed Opt Express [serial online]. 2011; 2 (Available at:) (Accessed August 24, 2013): 1504-1513
        • Kim D.Y.
        • Fingler J.
        • Zawadzki R.J.
        • et al.
        Noninvasive imaging of the foveal avascular zone with high-speed, phase-variance optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2012; 53: 85-92
        • White B.
        • Pierce M.
        • Nassif N.
        • et al.
        In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography.
        Opt Express [serial online]. 2003; 11 (Available at:) (Accessed August 24, 2013): 3490-3497
        • Leitgeb R.A.
        • Schmetterer L.
        • Hitzenberger C.K.
        • et al.
        Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography.
        Opt Lett. 2004; 29: 171-173
        • Tao Y.K.
        • Kennedy K.M.
        • Izatt J.A.
        Velocity-resolved 3D retinal microvessel imaging using single-flow imaging spectral domain optical coherence tomography.
        Opt Express [serial online]. 2009; 17 (Available at:) (Accessed August 24, 2013): 4177-4188
        • Grulkowski I.
        • Gorczynska I.
        • Szkulmowski M.
        • et al.
        Scanning protocols dedicated to smart velocity ranging in spectral OCT.
        Opt Express [serial online]. 2009; 17 (Available at:) (Accessed August 24, 2013): 23736-23754
        • Zotter S.
        • Pircher M.
        • Torzicky T.
        • et al.
        Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography.
        Opt Express [serial online]. 2011; 19 (Available at:) (Accessed August 24, 2013): 1217-1227
        • Makita S.
        • Jaillon F.
        • Yamanari M.
        • et al.
        Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography.
        Opt Express [serial online]. 2011; 19 (Available at:) (Accessed August 24, 2013): 1271-1283
        • Wang R.K.
        • Jacques S.L.
        • Ma Z.
        • et al.
        Three dimensional optical angiography.
        Opt Express [serial online]. 2007; 15 (Available at:) (Accessed August 24, 2013): 4083-4097
        • Braaf B.
        • Vermeer K.A.
        • Vienola K.V.
        • de Boer J.F.
        Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans.
        Opt Express [serial online]. 2012; 20 (Available at:) (Accessed August 24, 2013): 20516-20534
        • Kurokawa K.
        • Sasaki K.
        • Makita S.
        • et al.
        Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics.
        Opt Express [serial online]. 2012; 20 (Available at:) (Accessed August 24, 2013): 22796-22812
        • Braaf B.
        • Vienola K.V.
        • Christy K.
        • et al.
        Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO.
        Biomed Opt Express [serial online]. 2013; 4 (Available at:) (Accessed August 24, 2013): 51-65
        • Schmoll T.
        • Singh A.S.
        • Blatter C.
        • et al.
        Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension.
        Biomed Opt Express [serial online]. 2011; 2 (Available at:) (Accessed August 24, 2013): 1159-1168
        • Mariampillai A.
        • Leung M.K.
        • Jarvi B.A.
        • et al.
        Optimized speckle variance OCT imaging of microvasculature.
        Opt Lett. 2010; 35: 1257-1259
        • Motaghiannezam R.
        • Fraser S.
        Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography.
        Biomed Opt Express [serial online]. 2012; 3 (Available at:) (Accessed August 24, 2013): 503-521
        • Jia Y.
        • Tan O.
        • Tokayer J.
        • et al.
        Split-spectrum amplitude-decorrelation angiography with optical coherence tomography.
        Opt Express [serial online]. 2012; 20 (Available at:) (Accessed August 24, 2013): 4710-4725
        • Liu G.
        • Chou L.
        • Jia W.
        • et al.
        Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems.
        Opt Express [serial online]. 2011; 19 (Available at:) (Accessed August 24, 2013): 11429-11440
        • Kim D.Y.
        • Fingler J.
        • Zawadzki R.J.
        • et al.
        Optical imaging of the chorioretinal vasculature in the living human eye.
        Proc Natl Acad Sci U S A. 2013; 110: 14354-14359
        • Bhutto I.
        • Lutty G.
        Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choroiocapillaris complex.
        Mol Aspects Med. 2012; 33: 295-317