Fourier-Domain Optical Coherence Tomography Imaging in Keratoconus

A Corneal Structural Classification

      Objective

      To study corneal morphologic changes in a large keratoconic population and to establish a structural optical coherence tomography (OCT) classification.

      Design

      Cross-sectional, observational study.

      Participants

      A total of 218 keratoconic eyes from 218 patients and 34 eyes from 34 normal subjects.

      Methods

      A Fourier-domain OCT system with 5-μm axial resolution was used. For each patient, 3 high-resolution scans were made across the keratoconus cone. All scans were analyzed by keratoconus specialists who were not given access to patients' clinical and topographic data, and who established an OCT classification. The reproducibility of the classification and its correlation with clinical and paraclinical characteristics of patients with keratoconus were evaluated. The OCT examinations were performed every 4 months to follow up structural corneal changes.

      Main Outcome Measures

      Evaluation of the structural corneal changes occurring in keratoconus cases with various stages of severity based on OCT findings.

      Results

      Fourier-domain OCT classification containing 5 distinct keratoconus stages is proposed. Stage 1 demonstrates thinning of apparently normal epithelial and stromal layers at the conus. Stage 2 demonstrates hyperreflective anomalies occurring at the Bowman's layer level with epithelial thickening at the conus. Stage 3 demonstrates posterior displacement of the hyperreflective structures occurring at the Bowman's layer level with increased epithelial thickening and stromal thinning. Stage 4 demonstrates pan-stromal scar. Stage 5 demonstrates hydrops; 5a, acute onset: Descemet's membrane rupture and dilaceration of collagen lamellae with large fluid-filled intrastromal cysts; 5b, healing stage: pan-stromal scarring with a remaining aspect of Descemet's membrane rupture. The reproducibility of the classification was very high between the corneal specialist observers. Clinical and paraclinical characteristics of keratoconus, including visual acuity, corneal epithelium and stromal thickness changes, corneal topography, biomechanical corneal characteristics, and microstructural changes observed on confocal microscopy, were concordant with our OCT grading.

      Conclusions

      Optical coherence tomography provides an accurate assessment of structural changes occurring in keratoconus eyes. These changes were correlated with clinical and paraclinical characteristics of patients. The established classification not only allows structural follow-up of patients with keratoconus but also provides insight into the pathogenesis of keratoconus and treatment strategies for future research.

      Financial Disclosure(s)

      The author(s) have no proprietary or commercial interest in any materials discussed in this article.
      To read this article in full you will need to make a payment
      Subscribe to Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nottingham J.
        Practical Observations on Conical Cornea: and on the Short Sight, and Other Defects of Vision Connected with it.
        John Churchill, London1854 (1–19)
        • Amsler M.
        Le kératocône fruste au Javal.
        Ophtalmologica. 1938–39; 96: 77-83
        • Amsler M.
        Keratocone classique et keratocone fruste; arguments unitaires.
        Ophtalmologica. 1946; 111: 96-101
        • Krachmer J.H.
        • Feder R.S.
        • Belin M.W.
        Keratoconus and related noninflammatory corneal thinning disorders.
        Surv Ophthalmol. 1984; 28: 293-322
        • Kennedy R.H.
        • Bourne W.M.
        • Dyer J.A.
        A 48-year clinical and epidemiologic study of keratoconus.
        Am J Ophthalmol. 1986; 101: 267-273
        • Rabinowitz Y.S.
        Keratoconus.
        Surv Ophthalmol. 1998; 42: 297-319
        • Perry H.D.
        • Buxton J.N.
        • Fine B.S.
        Round and oval cones in keratoconus.
        Ophthalmology. 1980; 87: 905-909
        • Krumeich J.H.
        • Daniel J.
        • Knülle A.
        Live-epikeratophakia for keratoconus.
        J Cataract Refract Surg. 1998; 24: 456-463
        • Rabinowitz Y.S.
        • Rasheed K.
        KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus.
        J Cataract Refract Surg. 1999; 25: 1327-1335
        • Maeda N.
        • Klyce S.D.
        • Smolek M.K.
        • Thompson H.W.
        Automated keratoconus screening with corneal topography analysis.
        Invest Ophthalmol Vis Sci. 1994; 35: 2749-2757
        • Alió J.L.
        • Shabayek M.H.
        Corneal higher order aberrations: a method to grade keratoconus.
        J Refract Surg. 2006; 22: 539-545
        • McMahon T.T.
        • Szczotka-Flynn L.
        • Barr J.T.
        • et al.
        • CLEK Study Group
        A new method for grading the severity of keratoconus: the keratoconus severity score (KSS).
        Cornea. 2006; 25: 794-800
        • Mahmoud A.M.
        • Roberts C.J.
        • Lembach R.G.
        • et al.
        • CLEK Study Group
        CLMI: the Cone Location and Magnitude Index.
        Cornea. 2008; 27: 480-487
        • Li X.
        • Yang H.
        • Rabinowitz Y.S.
        Keratoconus: classification scheme based on videokeratography and clinical signs.
        J Cataract Refract Surg. 2009; 35: 1597-1603
        • Hollingsworth J.G.
        • Efron N.
        • Tullo A.B.
        In vivo corneal confocal microscopy in keratoconus.
        Ophthalmic Physiol Opt. 2005; 25: 254-260
        • Efron N.
        • Hollingsworth J.G.
        New perspectives on keratoconus as revealed by corneal confocal microscopy.
        Clin Exp Optom. 2008; 91: 34-55
        • Reinstein D.Z.
        • Gobbe M.
        • Archer T.J.
        • et al.
        Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with Artemis very-high frequency digital ultrasound.
        J Refract Surg. 2010; 26: 259-271
        • Reinstein D.Z.
        • Archer T.J.
        • Gobbe M.
        Corneal epithelial thickness profile in the diagnosis of keratoconus.
        J Refract Surg. 2009; 25: 604-610
        • Reinstein D.Z.
        • Archer T.J.
        • Gobbe M.
        Stability of LASIK in topographically suspect keratoconus confirmed non-keratoconic by Artemis VHF digital ultrasound epithelial thickness mapping: 1-year follow-up.
        J Refract Surg. 2009; 25: 569-577
        • Christopoulos V.
        • Kagemann L.
        • Wollstein G.
        • et al.
        In vivo corneal high-speed, ultra high-resolution optical coherence tomography.
        Arch Ophthalmol. 2007; 125: 1027-1035
        • Sin S.
        • Simpson T.L.
        The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography.
        Optom Vis Sci. 2006; 83: 360-365
        • Li Y.
        • Meisler D.M.
        • Tang M.
        • et al.
        Keratoconus diagnosis with optical coherence tomography pachymetry mapping.
        Ophthalmology. 2008; 115: 2159-2166
        • Li Y.
        • Tan O.
        • Brass R.
        • et al.
        Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes.
        Ophthalmology. 2012; 119: 2425-2433
        • Landis J.R.
        • Koch G.G.
        The measurement of observer agreement for categorical data.
        Biometrics. 1977; 33: 159-174
        • Haque S.
        • Simpson T.
        • Jones L.
        Corneal and epithelial thickness in keratoconus: a comparison of ultrasonic pachymetry, Orbscan II, and optical coherence tomography.
        J Refract Surg. 2006; 22: 486-493
        • Yadav R.
        • Kottaiyan R.
        • Ahmad K.
        • Yoon G.
        Epithelium and Bowman's layer thickness and light scatter in keratoconic cornea evaluated using ultrahigh resolution optical coherence tomography.
        J Biomed Opt. 2012; 17: 116010
        • Sykakis E.
        • Carley F.
        • Irion L.
        • et al.
        An in depth analysis of histopathological characteristics found in keratoconus.
        Pathology. 2012; 44: 234-239
        • Mathew J.H.
        • Goosey J.D.
        • Bergmanson J.P.
        Quantified histopathology of the keratoconic cornea.
        Optom Vis Sci. 2011; 88: 988-997
        • Somodi S.
        • Hahnel C.
        • Slowik C.
        • et al.
        Confocal in vivo microscopy and confocal laser-scanning fluorescence microscopy in keratoconus.
        Ger J Ophthalmol. 1996; 5: 518-525
        • Wygledowska-Promienska D.
        • Rokita-Wala I.
        • Gierek-Ciaciura S.
        • et al.
        The alterations in corneal structure at III/IV stage of keratoconus by means of confocal microscopy and ultrasound biomicroscopy before penetrating keratoplasty [in Polish].
        Klin Oczna. 1999; 101: 427-432
        • Uçakhan O.O.
        • Kanpolat A.
        • Ylmaz N.
        • Ozkan M.
        In vivo confocal microscopy findings in keratoconus.
        Eye Contact Lens. 2006; 32: 183-191
        • Chi H.H.
        • Katzin H.M.
        • Teng C.C.
        Histopathology of keratoconus.
        Am J Ophthalmol. 1956; 42: 847-860
        • Hafezi F.
        • Mrochen M.
        • Iseli H.P.
        • Seiler T.
        Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas.
        J Cataract Refract Surg. 2009; 35: 621-624
        • Teng C.C.
        Electron microscope study of the pathology of keratoconus: I.
        Am J Ophthalmol. 1963; 55: 18-47
        • Møller-Pedersen T.
        • Cavanagh H.D.
        • Petroll W.M.
        • Jester J.V.
        Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study.
        Ophthalmology. 2000; 107: 1235-1245
        • Jun A.S.
        • Cope L.
        • Speck C.
        • et al.
        Subnormal cytokine profile in the tear fluid of keratoconus patients.
        PLoS One [serial online]. 2011; 6 (Available at: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0016437. Accessed April 28, 2013): e16437
        • Wilson S.E.
        • He Y.G.
        • Weng J.
        • et al.
        Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing.
        Exp Eye Res. 1996; 62: 325-327
        • Fabre E.J.
        • Bureau J.
        • Pouliquen Y.
        • Lorans G.
        Binding sites for human interleukin 1 alpha, gamma interferon and tumor necrosis factor on cultured fibroblasts of normal cornea and keratoconus.
        Curr Eye Res. 1991; 10: 585-592
        • Lema I.
        • Durán J.A.
        Inflammatory molecules in the tears of patients with keratoconus.
        Ophthalmology. 2005; 112: 654-659
        • Saika S.
        • Yamanaka O.
        • Sumioka T.
        • et al.
        Fibrotic disorders in the eye: targets of gene therapy.
        Prog Retin Eye Res. 2008; 27: 177-196
        • Piñero D.P.
        • Alio J.L.
        • Barraquer R.I.
        • et al.
        Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study.
        Invest Ophthalmol Vis Sci. 2010; 51: 1948-1955
        • Huang D.
        • Li Y.
        • Tang M.
        Introduction to corneal and anterior segment imaging with the RTVue Fourier-domain optical coherence tomography system.
        in: Huang D. RTVue Fourier-Domain Optical Coherence Tomography Primer Series. vol II: Cornea and Anterior Segment. 2nd ed. Optovue, Fremont, CA2009: 9 (Available at: http://www.opto.com.br/imgs/downloads/1281621844_cornea_anteriorbook50044039revb.pdf. Accessed April 28, 2013)